
Calc. Var. (2022) 61:99
https://doi.org/10.1007/s00526-022-02187-7 Calculus of Variations

An extension of a theorem of Bers and Finn on the
removability of isolated singularities to the Euler–Lagrange
equations related to general linear growth problems

Michael Bildhauer1 ·Martin Fuchs1

Received: 30 March 2021 / Accepted: 15 January 2022 / Published online: 7 April 2022
© The Author(s) 2022

Abstract
A famous theorem of Bers and Finn states that isolated singularities of solutions to the non-
parametric minimal surface equation are removable. We show that this result remains valid,
if the area functional is replaced by a general functional of linear growth depending on the
modulus of the gradient.

Mathematics Subject Classification 49N60 · 49Q05 · 53A10

1 Introduction

We discuss solutions u ∈ C2(D) defined on an open set D ⊂ R
n of the equation

div

[
g′(|∇u|)

|∇u| ∇u

]
= 0 (1.1)

arising as the Euler–Lagrange equation of the variational problem∫
�

g
(|∇v|) dx → min (1.2)

among functions v: � → Rwith prescribed boundary data. The assumptions concerning the
density g are as follows:
we consider functions g: [0,∞) → R of class C2,α

([0,∞)
)
for some exponent 0 < α < 1

being of linear growth in the sense that with suitable constants a, A > 0, b, B ≥ 0 the
inequality

at − b ≤ g(t) ≤ At + B (1.3)
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holds for any t ≥ 0. Moreover, we require strict convexity of g by imposing the condition

g′′(t) > 0 for all t ≥ 0 . (1.4)

Finally, we assume

g′(0) = 0 . (1.5)

We thenwill prove that the famous theoremofBers andFinn (see [1,2]) on the removability
of isolated singularities for solutions of the non-parametric minimal surface equation extends
to any solution of (1.1) provided that g satisfies these hypotheses.

In more detail we have the following result:

Theorem 1 Consider an open set � ⊂ R
n, fix some point x0 ∈ � and assume that u ∈

C2
(
� \ {x0}

)
is a solution of Eq. (1.1) on the set D := � \ {x0} with g satisfying (1.3)–(1.5).

Then u admits an extension u ∈ C2(�) and u solves Eq. (1.1) on the set �.

In the case of minimal surfaces, i.e. for the choice g(t) = √
1 + t2 in Eq. (1.1) and

for n = 2, the result of the theorem was proved independently by Bers [1] and Finn [2].
Concerning solutions of the non-parametric minimal surface equation in dimensions n > 2
the removability of singular sets K being closed subsets of � such that Hn−1(K ) = 0 was
established by DeGiorgi and Stampacchia [3], by Simon [4], Anzellotti [5] and Miranda
[6]. As a matter of fact the removability of (isolated) singularities essentially depends on
the growth rate of the density g, which means that in the case of superlinear growth non-
removable (isolated) singularities exist. At the same time our arguments essentially use the
observation that convexity together with linear growth implies the boundedness of g′, in
particular g′ is a one-to-one mapping g′: [0,∞) → [0, g′∞), where g′∞ := limt→∞ g′(t).

During the proof of Theorem 1 we will have to distinguish two essentially different cases,
where the first one is closely related to the minimal surface setting in the sense that we
suppose ∫ ∞

0
tg′′(t) dt < ∞ (1.6)

restricting the growth of g′′ at infinity. Note that (1.6) is a consequence of the pointwise
inequality

g′′(t) ≤ c(1 + t)−μ , t ≥ 0 , (1.7)

provided we choose μ > 2. In the minimal surface case, i.e. for the choice g(t) = √
1 + t2,

we can choose μ = 3 in estimate (1.7), and by a “μ-surface in R
n+1” we denote the graph{(

x, u(x)
) ∈ R

n+1 : x ∈ D
}
of a solution u: D → R of Eq. (1.1), provided that g satisfies the

conditions (1.3), (1.4) and (1.7) for some exponent μ > 2. We refer to the recent manuscript
[7] on some geometric properties of μ-surfaces in the case n = 2. Adopting this notation we
deduce from Theorem 1 that μ-surfaces do not admit isolated singular points.

However, this removability property does not depend on any geometric features. As it is
formulated in Theorem 1, the non-existence of isolated singularities is just a consequence of
the linear growth of g which is also exploited in the second case∫ ∞

0
tg′′(t) dt = ∞ . (1.8)

This condition already occurs, e.g., in [8] (compare also [9]) in a quite different setting: in
Theorem 1.1 of [8], equation (1.8) together with some kind of balancing condition serves as
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a criterion for the solvability of a classical Dirichlet-problem, where the authors argue with
the help of suitable barrier functions. Both in [8] and in [9] generalized catenoids are used as
basic tools, which is also the case in our considerations. Depending on the conditions (1.6)
and (1.8), respectively, these catenoids are of infinte height or uniformly bounded.

We close the introduction by remarking that Theorem 1 easily implies a zero-order Liou-
ville type-result for entire solutions of certain non-autonomous equations in the plane.

Corollary 1 Let the function g satisfy (1.3)–(1.5) and define a(t) := g′(t)/t . Let u ∈ C2(R2)

denote a solution of

div
[
a
(|z|2|∇u(z)|) ∇u(z)

]
= 0 (1.9)

for all z = (x, y) = x + iy ∈ R
2 = C. Then u must be a constant function.

Proof For z ∈ C \ {0} let v(z) := u(1/z). From (1.9) it follows that v is a solution of (1.1)
onC \ {0}. Theorem 1 shows that v extends to a smooth solution of (1.1) on the whole plane.
Since u is smooth in the origin, we obtain the boundedness of v, and the constancy of v

follows from Theorem 1.1 in [10]. ��

2 Proof of Theorem 1 under condition (1.6)

In the following we consider energy densities g: [0,∞) → R of class C2,α such that (1.3)–
(1.5) hold. In particular g′ is a bounded function and strictly increasing, thus

0 = g′(0) < g′(t) → g′∞ as t → ∞ . (2.1)

W.l.o.g. it is assumed that

g′∞ = 1 . (2.2)

Moreover, g ∈ C2 together with g′(0) = 0 yields that the function G: Rn → R, G(p) :=
g
(|p|) is of class C2(Rn) satisfying

n∑
i, j=1

∂2G

∂ pi∂ p j
(p)qiq j > 0 for all p, q ∈ R

n , q 
= 0 . (2.3)

Step 1. Maximum principle.
We observe that in the subsequent considerations we may not assume Lipschitz continuity
of solutions up to the boundary, hence Theorem 1.2 of [11] does not apply. We will make
use of the following variant:

Lemma 1 Suppose that D is a bounded Lipschitz domain inRn and that we have (1.3)–(1.5).
Moreover suppose that u, v ∈ C2(D) ∩ C0(D) satisfy Eq. (1.1). Then we have:

u ≤ v + M on ∂D for some real number M ⇒ u ≤ v + M in D .

With Lemma 1 the following corollary is immediate:

Corollary 2 TheDirichlet-problemassociated to (1.1)within the classC2(D)∩C0(D) admits
at most one solution.
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Proof of Lemma 1. From (1.1) one obtains

0 =
n∑

i, j=1

∂2G

∂ pi∂ p j
(∇u)∂xi ∂x j u on D . (2.4)

Now we refer to Theorem 10.1, p. 263, of [12] with coefficients (x ∈ D, y ∈ R, p ∈ R
n)

ai j (x, y, p) := ∂2G

∂ pi∂ p j
(p)

which, by (2.3), are seen to be elliptic. Since we consider the admissible function space
C2(D) ∩ C0(D) the proof is complete with the above mentioned reference. ��
Step 2. Generalized catenoids as comparison surfaces.
Let g satisfy (1.3)–(1.5) and (1.6) and recall (2.1), which implies that g′ maps [0,∞) in a
one-to-one way onto the intervall [0, 1).

For numbers α > 0 and constants a ∈ R we define for x ∈ R
n , |x | > α1/(n−1),

k±
α,a(x) := l±α,a

(|x |)

:= ±
∫ |x |

α1/(n−1)

(
g′)−1

( α

rn−1

)
dr + a . (2.5)

We have:

Lemma 2 The functions k±
α,a are solutions of problem (1.1) on |x | > α1/(n−1) with continuous

extension (through the value a) to the boundary |x | = α1/(n−1).

Proof of Lemma 2. W.l.o.g. we let α = 1, a = 0 in the definition of k±
α,a and l

±
α,a , respectively.

Dropping the indices α and a we have for t > 1 (letting rn−1 = 1/g′(s))

l+(t) =
∫ t

1

(
g′)−1

( 1

rn−1

)
dr

=
∫ s∗(t)

∞
sg′′(s)

[
− 1

n − 1

(
g′(s)

)− n
n−1

]
ds ,

s∗ = s∗(t) := (
g′)−1

( 1

tn−1

)
,

hence

l+(t) =
∫ ∞

s∗(t)
sg′′(s)

[
1

n − 1

(
g′(s)

)− n
n−1

]
ds (2.6)

is well defined at least for t > 1 on account of assumption (1.6) and due to the behaviour of
g′ as stated in (2.1).

Moreover, from (2.6) it immediately follows that

lim
t↓1 l

+(t) = 0 ,

thus l+ has a continuous extension to t = 1 by letting l+(1) = 0.
Let us look at Eq. (1.1) in the case

D = BR(0) \ Br (0)

123



An extension of a theorem of Bers and Finn on the… Page 5 of 8 99

for balls centered at 0 with radii 0 < r < R ≤ ∞. Suppose further that we have a solution
u(x) of the form u(x) = ϕ(ρ), ρ = |x |. Then (1.1) is equivalent to the ODE

d

dρ

[
ρn−1 g

′(|ϕ′(ρ)|)
|ϕ′(ρ)| ϕ′(ρ)

]
= 0 , ρ ∈ (r , R) , (2.7)

and obviously l+ solves (2.7) for the choices r = 1, R = ∞. This proves Lemma 2, since
with obvious modifications the above calculations can be adjusted to the functions k−

α,a . ��

Step 3. Comparison principle.

Lemma 3 Let g satisfy the assumptions (1.3)–(1.6). For 0 < r < R < ∞ let D = BR(0) −
Br (0) in Eq. (1.1) and consider a solution u ∈ C2(D) ∩ C1

(
D

)
such that for some a ∈ R it

holds with α := rn−1

u ≤ k−
α,a on ∂BR(0) . (2.8)

Then we have

u ≤ k−
α,a throughout D . (2.9)

Proof of Lemma 3. By Lemmas 1 and 2 it is enough to show that

u ≤ k−
α,a on ∂Br (0) . (2.10)

W.l.o.g. let r = 1 and a = 0 and write k− in place of k−
1,a . Following a standard reasoning

known from the minimal surface case (compare [13]) we assume that (2.10) is wrong. Then
we can choose x0 ∈ ∂B1(0) satisfying (on account of k− ≡ 0 on ∂B1(0))

0 < u(x0) = max|x |=1
u(x) =: M . (2.11)

For t > 1 we let

φ(t) := u
(
t x0

) − k−(
t x0

)
and get

φ′(t) = x0 · ∇u
(
t x0

) + (
g′)−1

( 1

tn−1

)
.

Since we assume u ∈ C1
(
D

)
and since we have

(
g′)−1

(1
t

)
→ ∞ as t ↓ 1 ,

there exists ε > 0 such that φ′(t) > 0 for all t ∈ (1, 1 + ε). This implies

u
(
t x0

) − k−(
t x0

)
> u(x0) on (1, 1 + ε) . (2.12)

Recalling the definition of M and our assumption (2.8), Lemma 1 yields

u − k− ≤ M on D . (2.13)

Obviously (2.13) contradicts (2.12), thus we have (2.10) and the proof is complete. ��
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Step 4. Removability of isolated singularities.
Nowwe are going to prove the first part of the theorem. Let g satisfy (1.3)–(1.6) and consider
a solution u ∈ C2

(
BR(0) \ {0}) of Eq. (1.1) on the punctured ball BR(0) \ {0}. W.l.o.g. we

assume that u ∈ C1
(
BR(0)\Br (0)

)
for any radius 0 < r < R. Following standard arguments

(compare [13]) we claim

min|x |=R
u ≤ u(y) ≤ max|x |=R

u(x) for all y 
= 0 , |y| < R . (2.14)

In fact, we let

M(r) := max|x |=r
u(x) , 0 < r ≤ R ,

and define for 0 < r < R

a := M(R) +
∫ R

r

(
g′)−1

( α

tn−1

)
dt ,

i.e. we have (again with α = rn−1)

k−
α,a ≡ M(R) on ∂BR(0) , hence u ≤ k−

α,a on ∂BR(0) . (2.15)

Quoting Lemma 3 and observing that (2.15) corresponds to hypothesis (2.8), we obtain
(compare (2.9))

u ≤ k−
α,a on BR(0) \ Br (0) . (2.16)

Fix a point x such that 0 < |x | < R. Then (2.16) implies for any 0 < r = α1/(n−1) < |x |
(recall (2.5) and (2.15))

u(x) ≤ k−
α,a(x) = M(R) +

∫ R

|x |
(
g′)−1

( α

tn−1

)
dt . (2.17)

Recall that x is fixed and that we have (1.5). Hence, passing to the limit r → 0 in (2.17), we
obtain

u(x) ≤ M(R) for any x ∈ BR(0) \ {0} ,

thus the second inequality stated in (2.14) is established. The first inequality in (2.14) follows
with obvious modifications.

Finally, let ũ ∈ C1
(
BR(0)

)
be a smooth extension of u|∂BR(0). From the Hilbert-Haar

theory (w.r.t. the convex domain BR(0)) we find a unique Lipschitz-minimizer v: BR(0) → R

of the energy ∫
BR(0)

G
(∇w

)
dx =

∫
BR(0)

g
(|∇w|) dx

subject to the boundary data ũ|∂BR(0) = u|∂BR(0), which due to our hypotheses (recall that
g ∈ C2,α

([0,∞)
)
) turns out to be of class C2,β

(
BR(0)

)
for some β ∈ (0, 1). In fact, the

Hilbert-Haar minimizer v has Hölder continuous first derivatives (see, e.g. [11], Theorem
1.7) and standard arguments from regularity theory applied to Eq. (2.4) imply v ∈ C2,β .

We claim v = u on BR(0) \ {0}, which means that v is the desired C2-extension of u.
In fact, for 0 < ε � 1 it holds (using (2.4) for the functions u and v on D = BR(0) − {0}

and with ν denoting the exterior normal on ∂(BR(0) − Bε(0)))∫
BR(0)\Bε(0)

(∇u − ∇v)
(
DG(∇u) − DG(∇v)

)
dx
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=
∫

∂(BR(0)\Bε(0))
(u − v)

(
DG(∇u) − DG(∇v)

) · ν dH1

→ 0 as ε → 0

on account of u, v ∈ L∞(
BR(0)

)
. By ellipticity this implies ∇u = ∇v on BR(0) \ {0} and

our claim follows. ��

3 Proof of Theorem 1 under condition (1.8)

Let the density g satisfy the same assumptions as stated in the beginning of the previous
section, in particular we have (2.2), but now we replace (1.6) by condition (1.8). W.l.o.g. we
may assume that � = B2(0), x0 = 0 in Theorem 1, in particular B1(x0) � �. Replacing
(2.5) we now fix 0 < r < 1 and let

k±
r ,a(x) := l±r ,a

(|x |)

:= a ±
∫ |x |

1

(
g′)−1

( r

tn−1

)
dt , |x | > r

1
n−1 . (3.1)

Then we have for |x | > r1/(n−1) (letting tn−1 = r/g′(s) for the fixed number 0 < r < 1)

k±
r ,a(x) = a ∓ r

1
n−1

∫ s∗(|x |)

(g′)−1(r)
sg′′(s)

[
1

n − 1

(
g′(s)

)− n
n−1

]
ds ,

s∗ = s∗(|x |) := (
g′)−1

( r

|x |n−1

)
.

We recall (1.8) and note that k±
r ,a(x) is defined for |x | > r1/(n−1) with limit

k±
r ,a(x) → ∓∞ as |x | → r

1
n−1 . (3.2)

Here a ∈ R is chosen according to (note k±
r ,a(x) = a for |x | = 1)

u ≤ k−
r ,a = a := max

∂B1(0)
u on ∂B1(0) . (3.3)

Since u is bounded on ∂Br1/(n−1) (0) and since we have (3.2), we may choose ε > 0
sufficiently small such that

u ≤ k−
r ,a on ∂B(r+ε)1/(n−1) (0) . (3.4)

With (3.3) and (3.4) we now directly apply Lemma 1 to obtain

u ≤ k−
r ,a on B1(0) \ B(r+ε)1/(n−1) (0) . (3.5)

W.l.o.g. we may suppose ε < r/2, hence (3.5) gives

u ≤ k−
r ,a on B1(0) \ B(3r/2)1/(n−1) (0) . (3.6)

Now we fix x ∈ B1(0), x 
= 0, and recall that the real number a chosen in (3.3) is not
depending on the radius r considered above. We let

r := 1

2
|x |n−1 , i.e. |x | = (2r)1/(n−1) . (3.7)

Then (3.6) together with the choice (3.7) finally yields

u(x) ≤ k−
r ,a

(
x) . (3.8)
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On the other hand definition (3.1) gives together with the monotonicity of g′

k−
r ,a(x) = l−r ,a

(|x |) = a −
∫ |x |

1

(
g′)−1

(1
2

|x |n−1

tn−1

)
dt

= a +
∫ 1

|x |
(
g′)−1

(1
2

|x |n−1

tn−1

)
dt

≤ a + (
1 − |x |)(g′)−1(1/2) ≤ c , (3.9)

where the constant c is not depending on x , hence we have established an uniform upper
bound for u and a uniform lower bound follows along similar lines. Proceeding exactly as
done in the first case at the end of Step 4 the theorem is proved. ��
Funding Open Access funding enabled and organized by Projekt DEAL.
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