Please use this identifier to cite or link to this item:
doi:10.22028/D291-35276
Title: | Identification of tissue-specific and common methylation quantitative trait loci in healthy individuals using MAGAR |
Author(s): | Scherer, Michael Gasparoni, Gilles Rahmouni, Souad Shashkova, Tatiana Arnoux, Marion Louis, Edouard Nostaeva, Arina Avalos, Diana Dermitzakis, Emmanouil T. Aulchenko, Yurii S. Lengauer, Thomas Lyons, Paul A. Georges, Michel Walter, Jörn |
Language: | English |
Title: | Epigenetics & Chromatin |
Volume: | 14 |
Issue: | 1 |
Publisher/Platform: | Springer Nature |
Year of Publication: | 2021 |
Free key words: | Quantitative trait loci DNA methylation Tissue specifcity Computational biology |
DDC notations: | 500 Science |
Publikation type: | Journal Article |
Abstract: | Background Understanding the influence of genetic variants on DNA methylation is fundamental for the interpretation of epigenomic data in the context of disease. There is a need for systematic approaches not only for determining methylation quantitative trait loci (methQTL), but also for discriminating general from cell type-specific effects. Results Here, we present a two-step computational framework MAGAR (https://bioconductor.org/packages/MAGAR), which fully supports the identification of methQTLs from matched genotyping and DNA methylation data, and additionally allows for illuminating cell type-specific methQTL effects. In a pilot analysis, we apply MAGAR on data in four tissues (ileum, rectum, T cells, B cells) from healthy individuals and demonstrate the discrimination of common from cell type-specific methQTLs. We experimentally validate both types of methQTLs in an independent data set comprising additional cell types and tissues. Finally, we validate selected methQTLs located in the PON1, ZNF155, and NRG2 genes by ultra-deep local sequencing. In line with previous reports, we find cell type-specific methQTLs to be preferentially located in enhancer elements. Conclusions Our analysis demonstrates that a systematic analysis of methQTLs provides important new insights on the influences of genetic variants to cell type-specific epigenomic variation. |
DOI of the first publication: | 10.1186/s13072-021-00415-6 |
Link to this record: | urn:nbn:de:bsz:291--ds-352767 hdl:20.500.11880/32193 http://dx.doi.org/10.22028/D291-35276 |
ISSN: | 1756-8935 |
Date of registration: | 17-Jan-2022 |
Description of the related object: | Supplementary Information |
Related object: | https://static-content.springer.com/esm/art%3A10.1186%2Fs13072-021-00415-6/MediaObjects/13072_2021_415_MOESM1_ESM.docx https://static-content.springer.com/esm/art%3A10.1186%2Fs13072-021-00415-6/MediaObjects/13072_2021_415_MOESM2_ESM.xlsx https://static-content.springer.com/esm/art%3A10.1186%2Fs13072-021-00415-6/MediaObjects/13072_2021_415_MOESM3_ESM.xlsx https://static-content.springer.com/esm/art%3A10.1186%2Fs13072-021-00415-6/MediaObjects/13072_2021_415_MOESM4_ESM.xlsx https://static-content.springer.com/esm/art%3A10.1186%2Fs13072-021-00415-6/MediaObjects/13072_2021_415_MOESM5_ESM.xlsx https://static-content.springer.com/esm/art%3A10.1186%2Fs13072-021-00415-6/MediaObjects/13072_2021_415_MOESM6_ESM.xlsx https://static-content.springer.com/esm/art%3A10.1186%2Fs13072-021-00415-6/MediaObjects/13072_2021_415_MOESM7_ESM.xlsx https://static-content.springer.com/esm/art%3A10.1186%2Fs13072-021-00415-6/MediaObjects/13072_2021_415_MOESM8_ESM.xlsx |
Faculty: | NT - Naturwissenschaftlich- Technische Fakultät ZE - Zentrale Einrichtungen |
Department: | NT - Biowissenschaften ZE - Zentrum für Bioinformatik(ZBI) |
Professorship: | NT - Prof. Dr. Jörn Walter ZE - Sonstige |
Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
File | Description | Size | Format | |
---|---|---|---|---|
s13072-021-00415-6.pdf | 3,87 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License