Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-35276
Titel: Identification of tissue-specific and common methylation quantitative trait loci in healthy individuals using MAGAR
VerfasserIn: Scherer, Michael
Gasparoni, Gilles
Rahmouni, Souad
Shashkova, Tatiana
Arnoux, Marion
Louis, Edouard
Nostaeva, Arina
Avalos, Diana
Dermitzakis, Emmanouil T.
Aulchenko, Yurii S.
Lengauer, Thomas
Lyons, Paul A.
Georges, Michel
Walter, Jörn
Sprache: Englisch
Titel: Epigenetics & Chromatin
Bandnummer: 14
Heft: 1
Verlag/Plattform: Springer Nature
Erscheinungsjahr: 2021
Freie Schlagwörter: Quantitative trait loci
DNA methylation
Tissue specifcity
Computational biology
DDC-Sachgruppe: 500 Naturwissenschaften
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Background Understanding the influence of genetic variants on DNA methylation is fundamental for the interpretation of epigenomic data in the context of disease. There is a need for systematic approaches not only for determining methylation quantitative trait loci (methQTL), but also for discriminating general from cell type-specific effects. Results Here, we present a two-step computational framework MAGAR (https://bioconductor.org/packages/MAGAR), which fully supports the identification of methQTLs from matched genotyping and DNA methylation data, and additionally allows for illuminating cell type-specific methQTL effects. In a pilot analysis, we apply MAGAR on data in four tissues (ileum, rectum, T cells, B cells) from healthy individuals and demonstrate the discrimination of common from cell type-specific methQTLs. We experimentally validate both types of methQTLs in an independent data set comprising additional cell types and tissues. Finally, we validate selected methQTLs located in the PON1, ZNF155, and NRG2 genes by ultra-deep local sequencing. In line with previous reports, we find cell type-specific methQTLs to be preferentially located in enhancer elements. Conclusions Our analysis demonstrates that a systematic analysis of methQTLs provides important new insights on the influences of genetic variants to cell type-specific epigenomic variation.
DOI der Erstveröffentlichung: 10.1186/s13072-021-00415-6
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-352767
hdl:20.500.11880/32193
http://dx.doi.org/10.22028/D291-35276
ISSN: 1756-8935
Datum des Eintrags: 17-Jan-2022
Bezeichnung des in Beziehung stehenden Objekts: Supplementary Information
In Beziehung stehendes Objekt: https://static-content.springer.com/esm/art%3A10.1186%2Fs13072-021-00415-6/MediaObjects/13072_2021_415_MOESM1_ESM.docx
https://static-content.springer.com/esm/art%3A10.1186%2Fs13072-021-00415-6/MediaObjects/13072_2021_415_MOESM2_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1186%2Fs13072-021-00415-6/MediaObjects/13072_2021_415_MOESM3_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1186%2Fs13072-021-00415-6/MediaObjects/13072_2021_415_MOESM4_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1186%2Fs13072-021-00415-6/MediaObjects/13072_2021_415_MOESM5_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1186%2Fs13072-021-00415-6/MediaObjects/13072_2021_415_MOESM6_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1186%2Fs13072-021-00415-6/MediaObjects/13072_2021_415_MOESM7_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1186%2Fs13072-021-00415-6/MediaObjects/13072_2021_415_MOESM8_ESM.xlsx
Fakultät: NT - Naturwissenschaftlich- Technische Fakultät
ZE - Zentrale Einrichtungen
Fachrichtung: NT - Biowissenschaften
ZE - Zentrum für Bioinformatik(ZBI)
Professur: NT - Prof. Dr. Jörn Walter
ZE - Sonstige
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
s13072-021-00415-6.pdf3,87 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons