Please use this identifier to cite or link to this item: doi:10.22028/D291-33875
Title: Non-hyperoctahedral categories of two-colored partitions part I: new categories
Author(s): Mang, Alexander
Weber, Moritz
Language: English
Title: Journal of Algebraic Combinatorics
Publisher/Platform: Springer Nature
Year of Publication: 2021
Free key words: Quantum group
Unitary easy quantum group
Unitary group
Half-liberation
Tensor category
Two-colored partition
Partition of a set
Category of partitions
Brauer algebra
DDC notations: 510 Mathematics
Publikation type: Journal Article
Abstract: Compact quantum groups can be studied by investigating their representation categories in analogy to the Schur–Weyl/Tannaka–Krein approach. For the special class of (unitary) “easy” quantum groups, these categories arise from a combinatorial structure: rows of two-colored points form the objects, partitions of two such rows the morphisms. Vertical/horizontal concatenation and reflection give composition, monoidal product and involution. Of the four possible classes O, B, S and H of such categories (inspired, respectively, by the classical orthogonal, bistochastic, symmetric and hyperoctahedral groups), we treat the first three—the non-hyperoctahedral ones. We introduce many new examples of such categories. They are defined in terms of subtle combinations of block size, coloring and non-crossing conditions. This article is part of an effort to classify all non-hyperoctahedral categories of two-colored partitions. It is purely combinatorial in nature. The quantum group aspects are left out.
DOI of the first publication: 10.1007/s10801-020-00998-5
Link to this record: urn:nbn:de:bsz:291--ds-338751
hdl:20.500.11880/31190
http://dx.doi.org/10.22028/D291-33875
ISSN: 1572-9192
0925-9899
Date of registration: 20-Apr-2021
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Professorship: MI - Jun.-Prof. Dr. Moritz Weber
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
Mang-Weber2021_Article_Non-hyperoctahedralCategoriesO.pdf642,63 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons