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Abstract
Compact quantum groups can be studied by investigating their representation cate-
gories in analogy to the Schur–Weyl/Tannaka–Krein approach. For the special class of
(unitary) “easy” quantumgroups, these categories arise froma combinatorial structure:
rowsof two-coloredpoints form theobjects, partitions of two such rows themorphisms.
Vertical/horizontal concatenation and reflection give composition, monoidal product
and involution. Of the four possible classesO,B,S andH of such categories (inspired,
respectively, by the classical orthogonal, bistochastic, symmetric and hyperoctahedral
groups), we treat the first three—the non-hyperoctahedral ones. We introduce many
new examples of such categories. They are defined in terms of subtle combinations
of block size, coloring and non-crossing conditions. This article is part of an effort
to classify all non-hyperoctahedral categories of two-colored partitions. It is purely
combinatorial in nature. The quantum group aspects are left out.
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1 Introduction

In Woronowicz’s approach [15–17], (compact) quantum groups are understood as
certain non-commutative spaces, the formal duals of C∗-algebras, carrying a special
Hopf algebra structure, for which a non-commutative version of Pontryagin duality
can be proven. Reminiscent of the theorems of Tannaka–Krein and Schur–Weyl, a
duality exists between the class of compact quantum groups and a particular class of
involutive monoidal linear categories. The finite-dimensional unitary representations
of a given compact quantum group form such a category, and, conversely, a unique
maximal compact quantum group can be reconstructed from any such tensor category
[16].

Banica and Speicher [3] showed that sets of points as objects and partitions of finite
sets as morphisms with vertical concatenation as composition, horizontal concatena-
tion as monoidal product and reflection as involution provide concrete, combinatorial
initial data for such representation categories. Their construction yields compact quan-
tum subgroups of the free orthogonal quantum group O+

n introduced by Wang [13]
as a non-commutative counterpart of the classical group On of orthogonal real-valued
matrices.All examples of compact quantumgroups arising in this fashion, the so-called
easy quantum groups, have since been classified [1,3,8,10,14].

As Freslon, Tarrago and the second author demonstrated [4,11,12], Banica and
Speicher’s approach canbegeneralized to categories of partitions of sets of two-colored
points. In contrast to the uncolored case, here, vertical concatenation of partitions, i.e.,
the composition of morphisms, is restricted to such partitions with matching colorings
of their points. This construction yields combinatorial compact quantum subgroups of
the free unitary quantum groupU+

n , a quantum analogue of the classical unitary group
Un also introduced byWang [13]. A collective endeavor to find all such “unitary easy”
quantum groups was initiated by Tarrago and the second author in [12] and has since
been advanced by Gromada in [5] as well as by the authors in [7] and [6].

The classification of all unitary easy quantum groups has been approached from
several different angles of attack. Tarrago and the second author classified in [12]
all non-crossing categories C ⊆ P◦• of two-colored partitions, i.e., C ⊆ NC◦•, and
all categories C of two-colored partitions with ∈ C, the so-called group case.
In contrast, in [5] Gromada determined all categories C with the property of being
globally colorized, meaning ⊗ ∈ C. Lastly, the authors of the present article
found all categories C with 〈∅〉 ⊆ C ⊆ 〈 〉, i.e., categories of neutral pair partitions,
corresponding to easy compact quantum groups G with U+

n ⊇ G ⊇ Un , the “unitary
half-liberations”, in [7] and [6].

The present article is concerned with non-hyperoctahedral categories of two-
colored partitions, i.e., categories C ⊆ P◦• with ∈ C or /∈ C. We define
explicitly certain sets of partitions and show that each of them constitutes a non-
hyperoctahedral category. See the next section for an overview.

This article is part of an effort to classify all non-hyperoctahedral categories of
two-colored partitions. In subsequent articles it will be shown that the categories
found in the present article are pairwise distinct and actually constitute all possible
non-hyperoctahedral categories. Furthermore, a set of generating partitions for each
non-hyperoctahedral category will be determined.
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About hyperoctahedral categories of two-colored partitions, very little is known
for the moment. Note that in the uncolored case categories C ⊆ P with ⊗ /∈ C
and ∈ C give rise to quantum subgroups of the free hyperoctahedral quantum
group H+

n [2], hence the name.

2 Main result

Many new examples of non-hyperoctahedral categories of two-colored partitions are
provided. Roughly, they are determined by combinations of constraints on the

(i) sizes of blocks,
(ii) coloring of the points,
(iii) allowed crossings between blocks.

A bit more precisely: The coloring of any two-colored partition p ∈ P◦• induces
on the set of points a measure-like structure, the color sum σp, and a metric-like one,
the color distance δp. Measuring the set of all points yields the total color sum �(p).

Let now S ⊆ P◦• be an arbitrary set of two-colored partitions and consider the
following data:

(1) The set of block sizes:

F(S) := { |B| | p ∈ S, B block of p}.

(2) The set of block color sums:

V (S) := { σp(B) | p ∈ S, B block of p}.

(3) The set of total color sums:

�(S) := { �(p) | p ∈ S}.

(4) The set of color distances between any two subsequent legs of the same block
having the same normalized color:

L(S) := { δp(α1, α2) |p ∈ S, B block of p, α1, α2 ∈ B, α1 �= α2,

]α1, α2[p∩B = ∅, σp({α1, α2}) �= 0}.

(5) The set of color distances between any two subsequent legs of the same block
having different normalized colors:
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K (S) := { δp(α1, α2) |p ∈ S, B block of p, α1, α2 ∈ B, α1 �= α2,

]α1, α2[p∩B = ∅, σp({α1, α2}) = 0}.

(6) The set of color distances between any two legs belonging to two crossing blocks

X(S) := { δp(α1, α2) |p ∈ S, B1, B2 blocks of p, B1 crosses B2,

α1 ∈ B1, α2 ∈ B2}.

p B1

B2

α1 α2
It is a subtle question which combinations of conditions on these six quantities

define categories of partitions. We clarify it and we obtain a huge variety of new
categories of partitions.

Main Theorem (Theorem6.20)For any tuple ( f , v, s, l, k, x) listed in the table below,
where u ∈ {0} ∪ N, m ∈ N, D ⊆ {0, . . . , �m

2 �}, E ⊆ {0} ∪ N and where N is any
subsemigroup of (N,+), a non-hyperoctahedral category of two-colored partitions is
given by

R( f ,v,s,l,k,x) := {p ∈ P◦• |F({p}) ⊆ f , V ({p}) ⊆ v,�({p}) ⊆ s,

L({p}) ⊆ l, K ({p}) ⊆ k, X({p}) ⊆ x}.
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no. f v s l k x

(1) {2} ±{0, 2} 2umZ mZ mZ Z

(2) {2} ±{0, 2} 2umZ m+2mZ 2mZ Z

(3) {2} ±{0, 2} 2umZ m+2mZ 2mZ Z\mZ

(4) {2} {0} {0} ∅ mZ Z

(5) {2} ±{0, 2} {0} {0} {0} Z\±N
(6) {2} {0} {0} ∅ {0} Z\±N
(7) {2} {0} {0} ∅ {0} Z\{0}\±N
(8) {1, 2} ±{0, 1, 2} umZ mZ mZ Z\(±D+mZ)

(9) {1, 2} ±{0, 1, 2} 2umZ m+2mZ 2mZ Z\(±D+mZ)

(10) {1, 2} ±{0, 1} umZ ∅ mZ Z\(±D+mZ)

(11) {1, 2} ±{0, 1, 2} {0} {0} {0} Z\±E
(12) {1, 2} ±{0, 1} {0} ∅ {0} Z\±E
(13) N Z umZ mZ mZ Z\(±D+mZ)

(14) N Z {0} {0} {0} Z\±E

Here, ±S := S ∪ (−S) for any set S ⊆ Z.

Some of these correspond to the non-hyperoctahedral categories previously discov-
ered in [12], [5], [7] and [6] (see Sect. 7).

A lot about the order structure of the set of the categories from the Main Theorem
can be read off of the description given there: Whenever each of the six entries of one
tuple Q = ( f , v, s, l, k, x) is a subset of the corresponding entry of another Q′, then
RQ ⊆ RQ′ (see Lemma 6.2).

There are many ways of arranging the categories R( f ,v,s,l,k,x) into families. The
particular presentation in the Main Theorem was chosen mainly because it was the
shortest to write down which the authors could come up with.

Despite the complex order structure of the set of categories given in the Main
Theorem, a few salient patterns shall be pointed out: The first entry f of a tuple
( f , v, s, l, k, x)decideswhether the categoryR( f ,v,s,l,k,x) belongs to caseO (“orthog-
onal”, corresponding to f = {2}), to case B (“bistochastic”, f = {1, 2}) or to case S
(“symmetric”, f = N). The O-B-S-H distinction (where H stands for “hyperocta-
hedral”) originates on the (quantum) group side of the theory and refers to the four
classical matrix groups ON , BN , SN and HN of the respective names.

Another eye-catching division is that into those categories R( f ,v,s,l,k,x) with k �=
{0} and those with k = {0}. The former have a “periodical” nature: The parameters
Z\x are congruence classes with respect to some positive integer m, the “period”. In
contrast, categories with k = {0} know no such constraint, they are “aperiodical”.

Among the periodical categories, distinguishing between the different values of
the “period” m yields another coarse-graining. This systematization is similar to the
distinction between globally and locally colorized categories [12, Definition 2.3], i.e.,
between the categories which contain ⊗ and those which do not: R( f ,v,s,l,k,x) is
globally colorized if and only if 1 ∈ l. In all these cases the period is of course 1. And
the only way m may be equal to 1 without R( f ,v,s,l,k,x) being globally colorized is
that l = ∅.
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With that, the third and final major distinction to be pointed out here has been
touched upon. It consists in separating the family into those categories R( f ,v,s,l,k,x)

with l = ∅ and those with l �= ∅. In the former case, any two subsequent legs of the
same block must alternate in color. In the special case of f = {2} this means that the
category must consist of neutral pair partitions, i.e., be a subcategory of 〈 〉.

3 Basic definitions: partitions

Details on as well as examples and illustrations of two-colored partitions and their
categories can be found in [12]. However, we quickly recall the basics. In addition,
certain definitions from [6,7] are given here in greater generality.

After revisiting the fundamental definition of two-colored partitions, specialized
language is introduced to describe them more easily, in particular the concepts of
orientation, normalized color, color sum and color distance.

Notation 3.1

(a) For the remainder of the article fix a pair of two (arbitrarily chosen) injections
◾
( · ) and ◾( · ) with common domain N and disjoint images.

(b) For any {k, �} ⊆ {0} ∪ N, let Lk
� := {

◾
i | i ∈ N, i ≤ �} ∪ {◾ j | j ∈ N, j ≤ k}.

(c) Finally, let ◦ and • be any sets with ◦ �= •.

3.1 Two-colored partitions

Recall that a set-theoretical partition of any set X is any set of pairwise disjoint
non-empty subsets of X whose union is X . In this article we will strictly distinguish
between “partitions” in this sense and the one we define next.

For any {k, �} ⊆ {0} ∪ N a (two-colored) (k, �)-partition, p is specified by the
following data: 1) a set-theoretical partition, the blocks of p, of the set Lk

� , and 2) a
mapping Lk

� → {◦, •}, the coloring of p. The empty partition ∅, given by the empty
set, is the only (0, 0)-partition. The set of all (k, �)-partitions is denoted by P◦•(k, �).
Moreover, let P◦• := ⋃

{k,�}⊆{0}∪N P◦•(k, �). We represent partitions pictorially as
follows:

, , , , , , ,

, ,
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Given p ∈ P◦•(k, �), we say that L0
� is the lower row of p, containing its lower

points, and that Lk
0 is its upper row, given by the set of its upper points. Altogether,

we speak of the elements of Lk
� as the points of p. We consider each non-empty row

of p to be equipped with the total order induced by N, its linear order. If we speak of
the rank of a point, then in reference to these orders, in each row we say that lower
ranks are to the left of higher ranks (and, correspondingly, higher ranks to the right of
lower ranks). Moreover, an upper point and a lower one of the same rank are said to
be opposites. The same goes for any pair of sets covering the same ranks on different
rows.

If a set B is a block of p, we write B ∈ p. The elements of a block are called its
legs. If a block contains both upper and lower points, we speak of a through block. If
on the other hand a block is confined to one row, it is said to be non-through. And we
speak of lower and upper non-through blocks, respectively, depending on which row
it is.

The number of legs of a block is its size. Blocks of size one are called singletons,
blocks of size two pairs. A partition with only pairs is called a pair partition. We
denote by P◦•

2 the set of all pair partitions and by P◦•≤2 the set of all partitions all of
whose blocks are singletons or pairs.

The coloring of a partition is said to assign to each point its color, either • or ◦.
We call the two colors • and ◦ inverse to each other and write ◦ := • and • := ◦,
accordingly.

Here is an overview of the graphical representation of partitions:

singleton

two pairs
crossing

◾
1

◾
2

◾
3

◾
4

◾
5 ◾

6
◾
7

◾
8

◾
9

◾
10

◾1 ◾2 ◾3 ◾4 ◾5 ◾6 ◾7 ◾8 ◾9 ◾10 ◾11

four-
legged
blocks
each

just for
readability

two sepa-
rate
blocks

3.2 Order and intervals

For any {k, �} ⊆ {0}∪N and any p ∈ P◦•(k, �), each row of p is already equippedwith
a natural total linear order, namely the one given by ascending rank.Now,we endow the
entire set of points of p with a total cyclic order by specifying its successor function:
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It is defined by, on the one hand,
◾
i �→

◾
(i+1) for any i < � and ◾ j �→ ◾( j−1) for

any 1 < j , and, on the other hand, by ◾1 �→
◾
1 and

◾
� �→ ◾k if k > 0 and � > 0,

by ◾1 �→ ◾k if � = 0 < k and by
◾
� �→

◾
1 if k = 0 < �. That means p carries the

counter-clockwise orientation.

p

The terms successor, predecessor and neighbor always refer to the cyclic order. With
respect to the cyclic order on the points of p ∈ P◦•(k, �) it makes sense to speak of
intervals ]α, β[p, ]α, β]p, [α, β[p and [α, β]p for any two points α and β of p with,
importantly, α �= β.

α

β

]α, β]p

We call a set S of points consecutive if S is empty, an interval, a singleton set or
the complement of a singleton set.

3.3 Ordered tuples and crossings

We can extend the notion of intervals to tuples of more than two points: For n ≥ 3
many pairwise distinct pointsα1, . . . , αn in p ∈ P◦• we say that the tuple (α1, . . . , αn)

is ordered in p if for all {i, j, k} ⊆ {1, . . . , n} with i < j the set ]αi , α j [p contains
αk if and only if i < k < j . In fact, we can even talk about tuples of pairwise disjoint
consecutive sets being ordered.

We say that two distinct blocks B and B ′ of p cross each other if there exist points α,
β, α′ and β ′ in p such that the tuple (α, α′, β, β ′) is ordered and such that {α, β} ⊆ B
and {α′, β ′} ⊆ B ′.

α α′ β β ′

B
B ′
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If p has no crossing blocks, we call p a non-crossing partition. The set of all
non-crossing partitions is denoted by NC◦•.

3.4 Normalized color and color sum

Just like the cyclic order is often more convenient than the linear orderings of the rows,
it is useful to consider besides the original, native coloring of the points a second one:
By the normalized color of a point α in p ∈ P◦• we mean simply its native color in
case α is a lower point, but the inverse of its native color if α is an upper point.

If Pp is the set of all points of p, we call the signedmeasure σp on Pp which assigns
1 to normalized ◦ and −1 to normalized • the color sum of p. Null sets of σp are also
referred to as neutral.

The color sum �(p) := σp(Pp) of the set Pp of all points of p is called the total
color sum of p.

3.5 Color distance

Besides the color sum, ameasure-like structure on the points of a partition, the coloring
of the partition also induces a metric-like one: Given two points α and β in p ∈ P◦•,
we call

δp(α, β) :=

⎧
⎪⎨

⎪⎩

�(p) if α = β,

σp(]α, β[p) if α �= β and α, β have different normalized colors,

σp(]α, β]p) if α �= β and α, β have the same normalized color,

the color distance from α to β in p. For α �= β this means

δp(α, β) = 1
2σp({α}) + σp(]α, β[p) + 1

2σp({β}).

The map δp indeed has properties of a “distance”.

Lemma 3.2 For any points α, β and γ in any p ∈ P◦•,

(a) δp(α, α) ≡ 0 mod �(p),
(b) δp(α, β) ≡ −δp(β, α) mod �(p), and
(c) δp(α, γ ) ≡ δp(α, β) + δp(β, γ ) mod �(p).

Proof.

(a) The first claim is part of the definition of δp.
(b) By Part (a) we can assume α �= β. Rewrite the definition of δp as

δp(α, β) = σp(]α, β]p) + 1
2

(
σp({α}) − σp({β})) .

Using σp(]α, β]p) ≡ −σp(]β, α]p) mod �(p) now proves the claim.
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(c) Again, we can suppose α, β and γ are pairwise distinct. Otherwise, Parts (a)
and (b) already prove the claim. Now compute, employing the formula for δp
from the proof of Claim (b),

δp(α, β) + δp(β, γ ) = σp(]α, β]p) + σp(]β, γ ]p)
+ 1

2

(
σp({α}) − σp({β})) + 1

2

(
σp({β}) − σp({γ })) .

The claim then follows from σp(]α, β]p) + σp(]β, γ ]p) ≡ σp(]α, γ ]p)
mod �(p).

4 Basic definitions: categories of partitions

The definition of two-colored partitions recalled, we recapitulate the definitions of
operations for partitions and of categories. Again, see [12] for more.

4.1 Fundamental operations on partitions

There are three basic operations we execute on two-colored partitions: tensor product,
involution and composition.

4.1.1 Tensor product

For any {k1, k2, �1, �2} ⊆ {0} ∪ N and any partitions p1 ∈ P◦•(k1, �1) and p2 ∈
P◦•(k2, �2), if τ is the back-shift Lk1+k2

�1+�2
\Lk1

�1
→ Lk2

�2
given by

◾
(�1+i) �→

◾
i and

◾(k1+ j) �→ ◾ j , then the tensor product of (p1, p2) is defined as the partition p1⊗p2 ∈
P◦•(k1 + k2, �1 + �2) whose blocks are {B1 | B1 ∈ p1} ∪ {τ−1(B2) | B2 ∈ p2} and
whose coloring is c1 ∪ (c2 ◦ τ), where c1 is the coloring of p1 and c2 that of p2. Less
formally, we append p2 to the right of p1. This is an associative operation. Especially,
we can write tensor powers like p⊗n given by p ⊗ . . . ⊗ p with n factors. And we
define p⊗0 := ∅.
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p1

⊗

p2

⊗

p3

=

p1 ⊗ p2 ⊗ p3

4.1.2 Involution

If {k, �} ⊆ {0} ∪ N, if p ∈ P◦•(k, �) has coloring c and if 
 is the exchange Lk
� → L�

k
given by

◾
j �→ ◾ j and ◾i �→

◾
i , then the involution or adjoint of p is defined as the

partition p∗ ∈ P◦•(�, k)with blocks {
−1(B) | B ∈ p} and colors c◦
. In otherwords,
the operation swaps the roles of upper and lower rows. Since, obviously, (p∗)∗ = p
the name “involution” is justified.

p �→ p∗

4.1.3 Composition

Recall that the set of set-theoretical partitions of any given set forms a complete lattice
with respect to the partial order defined by s ≤ s′ if and only if for any D ∈ s there
exists D′ ∈ s′ such that D ⊆ D′. In particular, it makes sense to speak of joins (least
upper bounds).

For any two partitions p with coloring c and p′ with coloring c′, we say that the
pairing (p, p′) is composable if there are {k, �,m} ⊆ {0}∪N such that p ∈ P◦•(�,m)

and p′ ∈ P◦•(k, �) and such that c(◾ j) = c′(
◾
j) for each j ∈ N with j ≤ �.

If so, then the composition pp′ ∈ P◦•(k,m) of (p, p′) is the partition whose
coloring is given by the union of c restricted to L0

m and c′ restricted to Lk
0 and whose

blocks are given by

{B | B ∈ p and B ⊆ L0
m} ∪ {B ′ | B ′ ∈ p′ and B ′ ⊆ Lk

0}
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∪

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎝
L0
m ∩

⋃

B∈p
B∩χ−1(D) �=∅

B

⎞

⎟
⎟
⎟
⎠

∪

⎛

⎜
⎜
⎜
⎝
Lk
0 ∩

⋃

B′∈p′
B′∩D �=∅

B ′

⎞

⎟
⎟
⎟
⎠

∣
∣
∣
∣ D ∈ s

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

\{∅},

where χ : L0
� → L�

0, ◾ j �→ ◾ j and where s is the join of the set-theoretical partitions
{χ−1(B ∩ L�

0) | B ∈ p}\{∅} and {B ′ ∩ L0
� | B ′ ∈ p′}\{∅} of L0

� . In the graphical
representation, composition roughly translates as “continuing” the block-representing
strings across the two diagrams.

p′

p

= pp′

Since forming joins of set-theoretical partitions is associative, the composition of
two-colored partitions is an associative (partial) operation as well.

4.2 Categories of two-colored partitions

We call any set C ⊆ P◦• a category if it contains the partitions ∅, , , and and is
closed under tensor products, involution and composition of composable pairings [12,
Section 1.3], building on [3, Definition 2.2]. The set of all categories of two-colored
partitions is denoted by PCat◦•.

For every set G ⊆ P◦• we write 〈G〉 for the smallest category (with respect to ⊆)
which contains G. We say that G generates 〈G〉. If G = {p} for some p ∈ P◦•, we
slightly abuse notation by writing 〈p〉 instead of 〈{p}〉 for 〈G〉. Also, we mix the two,
writing, 〈G, q〉 for q ∈ P◦• instead of 〈G ∪ {p}〉.
Definition 4.1 [12, Definition 2.2] We say that a category C ⊆ P◦• is in case
(a) O if ⊗ /∈ C and /∈ C,
(b) B if ⊗ ∈ C and /∈ C,
(c) S if ⊗ ∈ C and ∈ C,
(d) H if ⊗ /∈ C and ∈ C.

In this series of articles, we are only interested in the first three cases. The hyperoc-
tahedral case seems to be the most complex of the four, similarly to the classification
in the uncolored case, where the same is true of the corresponding caseH defined by

⊗ /∈ C or ∈ C for categories C ⊆ P (see [8,10]).
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Definition 4.2 Let C ⊆ P◦• be a category.

(a) Equivalently to saying C is in case H we also call C hyperoctahedral.
(b) Hence, if instead C is in case O, B or S, we say that C is non-hyperoctahedral.
(c) The set of all non-hyperoctahedral categories is denoted by PCat◦•

NHO.

4.3 Composite category operations

The basic category operations can be used to construct further generic transformations.

4.3.1 Rotation

Categories are closed under four basic rotations: Let {k, �} ⊆ {0}∪N satisfy k+� > 0.
If 0 < k, define twomappings Lk−1

�+1 → Lk
�: ρ� is given by

◾
(i+1) �→

◾
i and

◾
1 �→ ◾1

and ◾ j �→ ◾( j+1) and ρ
⤸
extends the identity by

◾
(�+1) �→ ◾k. Similarly, provided

0 < �, two mappings Lk+1
�−1 → Lk

� can be defined: ρ
�

is given by ◾( j+1) �→ ◾ j and
◾1 �→

◾
1 and

◾
(i−1) �→

◾
i and ρ

�
extends the identity by ◾(k+1) �→

◾
�.

For any p ∈ P◦•(k, �) with coloring c and any r ∈ {�, ⤸,�, �}, whenever ρr is
defined, let the rotation pr be the partition with blocks {ρ−1

r (B) | B ∈ p} and colors
c ◦ ρr except that, importantly, xr is instead assigned the inverse of c(ρr (xr )), where
x
�

=
◾
1 and x

⤸
=
◾
(�+1) and x

�
= ◾1 and x

�
= ◾(k+1). Moreover, we call p�

defined by (p�)
⤸

if � > 0 and by (p⤸)
�

if k > 0 (which is compatible) the clockwise

cyclic rotation and, likewise, p� defined by (p�)
�

if k > 0 and by (p�)
�

if � > 0
the counter-clockwise cyclic rotation of p.

p �→ p�

4.3.2 Verticolor reflection

Given {k, �} ⊆ {0}∪N and p ∈ P◦•(k, �)with coloring c, the reflection p̂ ∈ P◦•(k, �)
is defined as the partitionwith blocks {κ−1(B) | B ∈ p} and coloring c◦κ where κ is the
self-mapping of Lk

� with ◾i �→
◾
(�−i+1) and ◾ j �→ ◾(k− j+ 1). The color inversion

p of p is constructed by inverting the coloring of p pointwise. And the verticolor
reflection p̃ is the color inversion of the reflection of p. Categories are closed under
verticolor reflection but generally neither under reflection nor color inversion.

p �→ p̃
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4.3.3 Erasing

Lastly, categories are closed under erasing turns: Let {k, l} ⊆ {0}∪N, let p ∈ P◦•(k, �)
and let p have coloring c. A turn in p is any set T of two points which is neutral and
consecutive in p. If so and if �′ = � − |L0

� ∩ T | and k′ = k − |Lk
0 ∩ T |, then let ε be

the unique mapping Lk′
�′ → Lk

� which maps upper points to upper points and lower
points to lower points, which is increasing with respect to the linear orders, and whose
image is Lk

�\T . The erasing of T from p is the partition E(p, T ) with coloring c ◦ ε

and with blocks
{
ε−1(B) | B ∈ p and B ∩ T = ∅

}
∪

{⋃ {
ε−1(B\T ) | B ∈ p and B ∩ T �= ∅

}}
\{∅}

In particular, because |T | = 2, any set B is a block of E(p, T ) if and only if
ε(B) ∈ p or there exist (not necessarily distinct) blocks B1 and B2 of pwith B1∩T �= ∅
and B2 ∩ T �= ∅ such that ε(B) = (B1 ∪ B2)\T .

T

p �→ E(p, T )

4.4 Alternative characterization of categories

Using the composite operations, we can give a helpful characterization of categories
based on the idea in the proof of [9, Lemma 3.6].

Lemma 4.3 (Alternative Characterization) Any set C ⊆ P◦• is a category if and only
if ∈ C and C is closed under tensor products, basic rotations, verticolor reflection
and erasing turns.

Proof Suppose C meets the conditions in the claim. We show it to be a category. Since
⤸ = , since � = and since ⤸ = and because C is closed under rotations,
we find { , , } ⊆ C. Erasing the only turn in ∈ C, under which C is invariant,
produces ∅ ∈ C.

For any {�,m} ⊆ {0}∪N and anypartition p ∈ C(�,m) the identity p∗ = (( p̃)�m)⤸�

and the assumptions that C is stable under rotations and verticolor reflection proves
that p∗ ∈ C. Hence, C is also involution-invariant.

Lastly, let {k, �,m} ⊆ {0} ∪ N, let p ∈ C(�,m), let q ∈ C(k, �) and let (p, q) be
composable. We want to show r := pq ∈ C. Since C is closed under rotations, it
suffices to prove r�m ∈ C. Let (c1, . . . , c�) for {c1, . . . , c�} ⊆ {◦, •} be the colors of
the lower points of q left to right. Let s be the tensor product of partitions from { , }
with lower row of coloring (c1, . . . , c�). Then, (p, s) and (s, q) are composable and
psq = pq = r . The diagram below illustrates that the pairing (s��, q ⊗ ((p��)�m))

is composable as well and that its composition yields the partition r�m .
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. . .c1 c�−1 c�

q

p

. . .

. . .

. . .

c1 c�−1 c�

c1 c�−1 c�

q

p

s

. . . . . .c1 c�−1 c� c� c�−1 c1

q (p��)�m

s��

...

Our assumptions guarantee e0 := q⊗((p��)�m) ∈ C. Because C is assumed invari-
ant under erasing turns, if we define the turn T0 := {

◾
�,
◾
(�+1)} in e0 ∈ C and then for

every j ∈ [[�−1]] the turn Tj := {
◾
(�− j),

◾
(�− j+1)} in e j := E(e j−1, Tj−1) ∈ C,

then the partition e� := E(e�−1, T�−1) ∈ C is identical with r�m as the diagram below
shows.
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. . .

. . .

. . .

. . .

...

c1 c2 c�−2c�−1 c� c1c2c�−2c�−1c�

c1 c2 c�−2c�−1 c1c2c�−2c�−1

c1 c2 c�−2 c1c2c�−2

c1 c2 c1c2

c1 c1

=

. . . . . .

...

c1 c2 c�−2c�−1 c� c1c2c�−2c�−1c�

Thus we have deduced r�m ∈ C as claimed. This proves that C is closed under
composition of composable pairs and thus a category.

5 The setsRQ

In the following, we will define in several steps an index set Q and for each Q ∈ Q
a set RQ ⊆ P◦• of partitions. The aim will be to show that each of these constitutes
a non-hyperoctahedral category (see Theorem 6.20, the main result of this article).
Auxiliary objects L and Z aid in defining Q and (RQ)Q∈Q.

Notation 5.1 For every set S denote its power set by P(S).

Definition 5.2 We define the parameter domain L as the six-fold Cartesian product of
P(Z):

L := P(Z) × P(Z) × P(Z) × P(Z) × P(Z) × P(Z).

Definition 5.3 Define the analyzer Z : P(P◦•) → L by

Z := ( F, V , �, L, K , X )

where, for all S ⊆ P◦•,

(a) F(S) := { |B| | p ∈ S, B ∈ p} is the set of block sizes,
(b) V (S) := { σp(B) | p ∈ S, B ∈ p} is the set of block color sums,
(c) �(S) := { �(p) | p ∈ S} is the set of total color sums,
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(d)

L(S) := { δp(α1, α2) | p ∈ S, B ∈ p, {α1, α2} ⊆ B, α1 �= α2,

]α1, α2[p∩B = ∅, σp({α1, α2}) �= 0}

is the set of color distances between any two subsequent legs of the same block
having the same normalized color,

(e)

K (S) := { δp(α1, α2) | p ∈ S, B ∈ p, {α1, α2} ⊆ B, α1 �= α2,

]α1, α2[p∩B = ∅, σp({α1, α2}) = 0}

is the set of color distances between any two subsequent legs of the same block
having different normalized colors and

(f)

X(S) := { δp(α1, α2) | p ∈ S, {B1, B2} ⊆ p, B1 crosses B2 in p,

α1 ∈ B1, α2 ∈ B2}

is the set of color distances between any two legs belonging to two crossing blocks.

The parameter domain L and the analyzer Z allow us to now define the following
map which will later induce the announced family (RQ)Q∈Q.

Notation 5.4 Given any family (Si )i∈I of sets, we write ≤ for the product order on
the Cartesian product

Ś

i∈I P(Si ) induced by the partial orders ⊆ on the factors.

Definition 5.5 Define the parameterization as the mapping

R : L → P(P◦•), L �→ RL := {p ∈ P◦• | Z({p}) ≤ L}.

WithR we can single out sets of partitions by placing constraints on the six aggre-
gated combinatorial features of partitions listed above.

Notation 5.6

(a) For all {x, y} ⊆ Z and {A, B} ⊆ P(Z) write

x A+yB := {xa + yb | a ∈ A, b ∈ B}.

Moreover, put then x A − yB := x A + (−y)B. Per A = {1} expressions like
x + yB are defined as well, and per x = 1 so are such like A + yB.

(b) Let ±S := S ∪ (−S) for all sets S ⊆ Z.
(c) For all m ∈ Z and D ⊆ Z define

Dm := ±D + mZ and D′
m := ±(D ∪ {0}) + mZ.
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(d) Use the abbreviations [[0]] := ∅ and [[k]] := {1, . . . , k} for all k ∈ N.

Definition 5.7 Define the parameter range Q as the subset of L comprising exactly all
tuples

( f , v, s, l, k, x)

listed below, where u ∈ {0} ∪ N, m ∈ N, D ⊆ {0} ∪ [[�m
2 �]], where E ⊆ {0} ∪ N and

where N is a subsemigroup of (N,+):

f v s l k x

{2} ±{0, 2} 2umZ mZ mZ Z

{2} ±{0, 2} 2umZ m+2mZ 2mZ Z

{2} ±{0, 2} 2umZ m+2mZ 2mZ Z\mZ

{2} {0} {0} ∅ mZ Z

{2} ±{0, 2} {0} {0} {0} Z\N0
{2} {0} {0} ∅ {0} Z\N0
{2} {0} {0} ∅ {0} Z\N ′

0{1, 2} ±{0, 1, 2} umZ mZ mZ Z\Dm

{1, 2} ±{0, 1, 2} 2umZ m+2mZ 2mZ Z\Dm

{1, 2} ±{0, 1} umZ ∅ mZ Z\Dm

{1, 2} ±{0, 1, 2} {0} {0} {0} Z\E0
{1, 2} ±{0, 1} {0} ∅ {0} Z\E0
N Z umZ mZ mZ Z\Dm

N Z {0} {0} {0} Z\E0

WithQ andR defined, so has been the family (RQ)Q∈Q. The characterizing condi-
tions Z({ · }) ≤ Q of the setsRQ for Q ∈ Q will be successively explained in Sect. 6
in the process of proving their invariance under the category operations.

6 Invariance ofRQ under the category operations

The strategy for proving that the sets defined in the preceding Sect. 5 are actually
categories of partitions is the following: We choose the most convenient elements Q
of Q, the ones for which it is easiest to prove that RQ is a category. Once we have
verified that these setsRQ are categories, we show that any other Q ∈ Q can bewritten
as a meet of a suitable family Q′ ⊆ Q of convenient ones in the complete lattice L.
Then, Lemma 6.2 will allow us to conclude that RQ is a category for each Q ∈ Q.

Notation 6.1 Given a family (Si )i∈I of sets, we use the symbols
⋂

× for the meet and⋃
× for the join operator of the product order ≤ with respect to ⊆ on

Ś

i∈I P(Si ).

Lemma 6.2 The mapping R : L → P(P◦•) is monotonic and preserves meets.

Proof. For any {L, L ′} ⊆ L with L ≤ L ′ and any p ∈ P◦• the condition p ∈ RL , i.e.,
Z({p}) ≤ L , implies Z({p}) ≤ L ′ and thus p ∈ RL ′ . Hence, R is monotonic. And
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for all subsets L′ ⊆ L,
⋂

{RL | L ∈ L′} =
⋂

{{p ∈ P◦• | Z({p}) ≤ L} | L ∈ L′}
= {p ∈ P◦• | ∀L ∈ L′ : Z({p}) ≤ L}
= {p ∈ P◦• | Z({p}) ≤

⋂

×L
′}

= R⋂
×L′ ,

where we have only used the definition of R.

6.1 Behavior of Z under category operations

In order to show that RQ is a category for the convenient values Q ∈ Q, we will use
the Alternative Characterization (Lemma 4.3). It pays to consider abstractly how Z
behaves under the (alternative) category operations beforehand.

6.1.1 Behavior of Z under rotation

The first set of operations are the four basic rotations defined in Sect. 4.3.1.

Lemma 6.3 Let p ∈ P◦• and let r ∈ {�, ⤸,�, �} be such that pr is defined and let
ρr be the bijection which rotates the points of pr back to their original positions in p.

(a) σpr (S) = σp(ρr (S)) for any set S of points in pr .
(b) ]α, β[pr = ρ−1

r (]ρr (α), ρr (β)[p) for any points α and β of pr with α �= β.
(c) δpr (α, β) = δp(ρr (α), ρr (β)) for any points α and β of pr .

Proof. Resume the notation from the definition of the rotation operation in Sect. 4.3.1.

(a) The coloring of pr is given by c ◦ ρr except that the point xr has the inverse color
of c(ρr (xr )) instead. However, because xr is located on a different row in pr than
ρr (xr ) is in p, the normalized colors of xr in pr and of ρr (xr ) in p do concur.
Since no other point changes rows during the rotation operation, that means that
each point γ of pr has the same normalized color in pr as the point ρr (γ ) has in
p. And this conclusion is equivalent to the claim.

(b) By distinguishing a multitude of cases, it can be checked that the definition of ρr
ensures that any triple of pairwise distinct points (γ1, γ2, γ3) is ordered in pr if
and only if the triple (ρr (γ1), ρr (γ2), ρr (γ3)) is ordered in p. And from that the
claim follows.

(c) If α = β, then Part (a) proves δpr (α, β) = �(pr ) = �(p) = δp(ρ(α), ρ(β)).
Should α �= β, then Parts (a) and (b) let us infer

δpr (α, β) = 1
2σpr ({α}) + σpr (]α, β[pr ) + 1

2σpr ({β})
= 1

2σp({ρr (α)}) + σp(]ρr (α), ρr (β)[p) + 1
2σp({ρr (β)})

= δp(ρr (α), ρr (β)),

which is what we needed to see.
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Lemma 6.4 For any r ∈ {�, ⤸,�, �} and any p ∈ P◦• such that pr is defined,

Z({pr }) ≤ Z({p}).

Proof Denote by ρr map sending the points of pr back to their former locations in p.
Recall that, by definition, for any B, saying B ∈ pr and ρr (B) ∈ p are equivalent.

Step 1: Component F . The fact that ρr is bijective implies F({pr }) = { |B| | B ∈
pr } = { |ρr (B)| | ρr (B) ∈ p} ⊆ F({p}).

Step 2: Component V . By Lemma 6.3 (a), similarly, V ({pr }) = {σpr (B) | B ∈
pr } = {σp(ρr (B)) | ρr (B) ∈ p} ⊆ V ({p}).

Step 3: Component �. The same lemma yields �(pr ) = �(p) in particular.
Step 4:Components L and K . For any B ∈ pr and any {α1, α2} ⊆ B withα1 �= α2,

(and thus also ρr (B) ∈ p and {ρr (α1), ρr (α2)} ⊆ ρr (B) and ρr (α1) �= ρr (α2)),
if ]α1, α2[pr ∩B = ∅, then Lemma 6.3 (b) guarantees ]ρr (α1), ρr (α2)[p∩ρr (B) =
ρr (]α1, α2[pr ∩B) = ∅. Therefore the integer δpr (α1, α2) = δp(ρr (α1), ρr (α2)) (by
Lemma 6.3 (c)) is an element of L({p}) if σp({ρr (α1), ρr (α2)} �= 0 and of K ({p})
otherwise. Because the statements σpr ({α1, α2}) = 0 and σp({ε(α1), ε(α2)}) = 0 are
equivalent by Lemma 6.3 (a) we have thus verified (L, K )({pr }) ≤ (L, K )({p}).

Step 5: Component X . Let {B1, B2} ⊆ pr , let α1 ∈ B1 and α2 ∈ B2 and
let B1 and B2 cross in pr . The last assumption can be equivalently expressed as
there existing {η, θ} ⊆ B1 such that ]η, θ [pr ∩B2 �= ∅ and ]θ, η[pr ∩B2 �= ∅.
Lemma 6.3 (b) lets us infer ]ρr (η), ρr (θ)[p∩ρr (B2) = ρr (]η, θ [pr ∩B2) �= ∅ and
also ]ρr (θ), ρr (η)[p∩ρr (B2) = ρr (]θ, η[pr ∩B2) �= ∅. Hence, ρr (B1) and ρr (B2)

cross in p. In consequence, Lemma 6.3 (c) allows us to conclude δpr (α1, α2) =
δp(ρr (α1), ρr (α2)) ∈ X({p}) by ρr (α1) ∈ ρr (B1) and ρr (α2) ∈ ρr (B2). With
X({pr }) ⊆ X({p}) thus confirmed, the full assertion is now clear.

6.1.2 Behavior of Z under verticolor reflection

Next, we treat the operation of verticolor reflection defined in Sect. 4.3.2.

Lemma 6.5 Let p ∈ P◦• be arbitrary and let κ be the bijection which reflects the
points of p̃ at the vertical axis.

(a) σ p̃(S) = −σp(κ(S)) for any set S of points in p̃.
(b) ]α, β[ p̃= κ−1(]κ(β), κ(α)[p) for any points α and β of p̃ with α �= β.
(c) δ p̃(α, β) = −δp(κ(β), κ(α)) for any points α and β of p̃.

Proof.

(a) If c is the coloring of p, then the reflection p̂ by definition has the coloring c ◦ κ .
Since κ maps lower points to lower points and upper points to upper points, the
normalized color of any point γ of p̂ in p̂ is hence the same as the normalized
color of κ(γ ) in p. Since the verticolor reflection p̃ is obtained from p̂ by inverting
all colors (and thus also normalized colors), the normalized colors of γ in p̃ and
of κ(γ ) in p are thus exactly inverse to each other. And that yields the claim.
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(b) The definition of κ and case distinctions between upper and lower points show
that any triple (γ1, γ2, γ3) of pairwise distinct points of p̂ is ordered there if and
only if the triple (κ(γ3), κ(γ2), κ(γ1)) is ordered in p. In other words, reflection
inverts cyclic order. Since p̂ and p̃ differ only in their colorings, the claim follows
from that.

(c) If α = β, then δ p̃(α, β) = �( p̃) = −�(p) = δp(κ) by Part (a). Hence, by the
definitions of δ p̃ and δp and by Parts (a) and (b), whenever α �= β, then

δ p̃(α, β) = 1
2σ p̃({α}) + σ p̃(]α, β[ p̃) + 1

2σ p̃({β})
= − 1

2σp({κ(α)}) − σp(]κ(β), κ(α)[p) − 1
2σp({κ(β)})

= −δp(κ(β), κ(α)),

as claimed.

Lemma 6.6 For all p ∈ P◦•,

Z({ p̃}) ≤ (F,−V ,−�,−L,−K ,−X)({p}).

Proof Let κ be the map which sends the points of p̃ to their former places in p and
recognize that for any B the definition of p̃ means that B ∈ p̃ if and only if κ(B) ∈ p.

Step 1: Component F . Since κ is a bijective mapping, F({ p̃}) = { |B| | B ∈ p̃} =
{ |κ(B)| | κ(B) ∈ p} ⊆ F({p}).

Step 2: Component V . By applying Lemma 6.5 (a) we can similarly conclude
V ({p}) = {σ p̃(B) | B ∈ p̃} = {−σp(κ(B)) | κ(B) ∈ p} ⊆ −V ({p}).

Step 3: Component �. As a special case of Lemma 6.5 (a) we obtain �( p̃) =
−�(p), which proves �({ p̃}) ⊆ −�({p}).

Step 4: Components L and K . Let B ∈ p̃ and {α1, α2} ⊆ B with α1 �= α2 and
]α1, α2[ p̃∩B = ∅ be arbitrary. It follows that not only κ(B) ∈ p and {κ(α2), κ(α1)} ⊆
κ(B) and κ(α2) �= κ(α1) but also, by Lemma 6.5 (b), that ]κ(α2), κ(α1)[p∩κ(B) =
κ(]α1, α2[ p̃∩B) = ∅. Thus, according to Lemma 6.5 (c) we have shown δ p̃(α1, α2) =
−δp(κ(α2), κ(α1)) to be an element of−L({p}) if σp({κ(α2), κ(α1)}) �= 0 and one of
−K ({p}) otherwise. Because σ p̃({α1, α2}) = 0 if and only if σp({κ(α2), κ(α1)}) = 0
by Lemma 6.5 (a), that is all we needed to prove in order to see (L, K )({ p̃}) ≤
(−L,−K )({p}).

Step 5: Component X . If {B1, B2} ⊆ p̃ and if B1 and B2 cross in p̃ and if α1 ∈ B1
and α2 ∈ B2, then there exist {η, θ} ⊆ B1 with η �= θ such that ]η, θ [ p̃∩B2 �=
∅ and ]θ, η[ p̃∩B2 �= ∅. Lemma 6.5 (b) then proves ]κ(θ), κ(η)[p∩κ(B2) =
κ(]η, θ [ p̃∩B2) �= ∅ and, likewise, ]κ(η), κ(θ)[p∩κ(B2) = κ(]θ, η[ p̃∩B2) �= ∅.
Thus, κ(B1) and κ(B2) cross in p. Since crossing each other is a symmetric rela-
tion, κ(B2) also crosses κ(B1). With the help of Lemma 6.5 (c), we can therefore
conclude δ p̃(α1, α2) = −δp(κ(α2), κ(α1)) ∈ −X({p}). Thus, X({ p̃}) ⊆ −X({p}),
completing the proof.

6.1.3 Behavior of Z under tensor products

The third is the fundamental operation of tensor product defined in Sect. 4.1.1.
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Lemma 6.7 Let {p1, p2} ⊆ P◦• be arbitrary and for each i ∈ {1, 2} let Si be the set
of points of p1 ⊗ p2 coming from pi and let τi be the bijection sending the points of
Si to their original positions in pi .

(a) σp1⊗p2(S) = ∑2
i=1 σpi (τi (S ∩ Si )) for any set S of points in p1 ⊗ p2.

(b) For any i ∈ {1, 2} and any {α, β} ⊆ Si with α �= β the set ]α, β[p1⊗p2 is given
by τ−1

i (]τi (α), τi (β)[pi ) or τ−1
i (]τi (α), τi (β)[pi ) ∪ S3−i .

(c) For any i ∈ {1, 2} and any {α, β} ⊆ Si with α �= β the integer δp1⊗p2(α, β) is
given by δpi (τi (α), τi (β)) or δpi (τi (α), τi (β)) + �(p3−i ).

Proof.

(a) If c1 and c2 are the colorings of p1 and p2, respectively, then p1⊗ p2 by definition
has the coloring

⋃2
i=1(ci ◦ τi ). Because τ1 is a restriction of the identity and τ2

the back-shift from the definition of ⊗ in Sect. 4.1.1, both these maps send lower
points to lower points and upper points to upper points. In consequence, for any
i ∈ {1, 2} the normalized color of any point γ ∈ Si in p1 ⊗ p2 is the same as that
of τi (γ ) in pi . Now, the assertion is clear.

(b) The claim follows from the definition of p1 ⊗ p2 via a large number of case
distinctions.

(c) In case α = β we can conclude from Part (a) that δp1⊗p2(α, β) = �(p1 ⊗ p2) =
σp1⊗p2(S1 ∪ S2) = ∑2

j=1 σp j (τ j (S j )) = �(p1) + �(p2) = δpi (τi (α), τi (β)) +
�(p3−i ). Hence, let α �= β. By Part (a) we know

σp1⊗p2(τ
−1
i (]τi (α), τi (β)[pi )) = σpi (]τi (α), τi (β)[pi )

and

σp1⊗p2(τ
−1
i (]τi (α), τi (β)[pi ) ∪ S3−i ) = σpi (]τi (α), τi (β)[pi ) + σp3−i (S3−i )

= σpi (]τi (α), τi (β)[pi ) + �(p3−i ).

Hence,σp1⊗p2(]α, β[p1⊗p2) is givenbyσpi (]τi (α), τi (β)[pi )orσpi (]τi (α), τi (β)[pi )+
�(p3−i ) by Part (b). And of, course, σp1⊗p2({α}) = σpi ({τi (α)}) and, likewise,
σp1⊗p2({β}) = σpi ({τi (β)}) by Part (a). The definitions of δp1⊗p2 and δpi there-
fore imply

δp1⊗p2(α, β) = 1
2σp1⊗p2({α}) + σp1⊗p2(]α, β[p1⊗p2) + 1

2σp1⊗p2({β})
= 1

2σpi ({τi (α)}) + σpi (]τi (α), τi (β)[pi ) + 1
2σpi ({τi (β)}) + x�(p3−i )

= δpi (τi (α), τi (β)) + x�(p3−i )

for some x ∈ {0, 1}, which is what we needed to prove.

Lemma 6.8 Let {p1, p2} ⊆ P◦• be arbitrary.

(a) F({p1 ⊗ p2}) ⊆ F({p1, p2}).
(b) V ({p1 ⊗ p2}) ⊆ V ({p1, p2}).
(c) �({p1 ⊗ p2}) ⊆ gcd(�({p1, p2}))Z.
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(d) Y ({p1 ⊗ p2}) ⊆ Y ({p1, p2}) + gcd(�({p1, p2}))Z for all Y ∈ {L, K , X}.

Proof. For each i ∈ {1, 2} let Si be the set of points of p1 ⊗ p2 stemming from pi and
let τi be the mapping which moves them to their original locations in pi . Recall that
the blocks of p1 ⊗ p2 are given by

⋃2
i=1{B ⊆ Si | τi (B) ∈ pi }.

(a) As τ1 and τ2 are bijections, F({p1 ⊗ p2}) = { |B| | B ∈ p1 ⊗ p2} =⋃2
i=1{ |B| | B ⊆ Si , τi (B) ∈ pi } = ⋃2

i=1{ |τi (B)| | B ⊆ Si , τi (B) ∈ pi } ⊆
F({p1, p2}).

(b) By Lemma 6.7 (a), quite similarly, V ({p1⊗ p2}) = {σp1⊗p2(B) | B ∈ p1⊗ p2} =
⋃2

i=1{σp1⊗p2(B) | B ⊆ Si , τi (B) ∈ pi } = ⋃2
i=1{σpi (B) | B ⊆ Si , τi (B) ∈

pi } ⊆ V ({p1, p2}).
(c) Applying Lemma 6.7 (a) once more shows �(p1 ⊗ p2) = σp1⊗p2(S1 ∪ S2) =

∑2
i=1 σpi (Si ) = �(p1) + �(p2) ⊆ gcd(�({p1, p2}))Z.

(d) We distinguish two cases based on the value of Y .
Case 1: Parameters L and K . Let B ∈ p1 ⊗ p2 and {α1, α2} ⊆ B be arbi-
trary with α1 �= α2 and ]α1, α2[p∩B = ∅. Then, we find i ∈ {1, 2} with
B ⊆ Si and τi (B) ∈ pi . Of course, {τi (α1), τi (α2)} ⊆ τi (B) and τi (α1) �=
τi (α2). Moreover, since by Lemma 6.7 (b) the set ]α1, α2[p1⊗p2 can only be
given by τ−1

i (]τi (α), τi (β)[pi ) or τ−1
i (]τi (α), τi (β)[pi ) ∪ S3−i we can conclude

from B ⊆ Si that ]α1, α2[p1⊗p2∩B = τ−1
i (]τi (α), τi (β)[pi ) ∩ B. It follows

∅ = τi (]α1, α2[p1⊗p2∩B) =]τi (α1), τi (α2)[pi ∩τi (B). Finally, Lemma 6.7 (c)
tells us δp1⊗p2(α1, α2) ∈ δpi (τi (α1), τi (α2)) ∈ �(p3−i )Z. In light of the fact that
σp1⊗p2({α1, α2}) = 0 if and only if σpi ({τi (α1), τi (α2)}) = 0 by Lemma 6.7 (a),
we have thus shown Y ({p1 ⊗ p2}) ⊆ Y ({p1, p2}) + gcd(�({p1, p2}))Z.
Case 2: Let {B1, B2} ⊆ p1⊗ p2, let B1 and B2 cross each other in p1⊗ p2 and let
α1 ∈ B1 and α2 ∈ B2 be arbitrary. Then, there exists i ∈ {1, 2} such that B1 ⊆ Si .
As an intermediate step we show B2 ⊆ Si . The crossing implies the existence of
{η, θ} ⊆ B1 such that η �= θ and ]η, θ [p1⊗p2∩B2 �= ∅ and ]θ, η[p1⊗p2∩B2 �= ∅.
By Lemma 6.7 (b) there are {Oη,θ , Oθ,η} ⊆ {∅, S3−i } such that ]η, θ [p1⊗p2=
τ−1
i (]τi (η), τi (θ)[pi ) ∪ Oη,θ and ]θ, η[p1⊗p2= τ−1

i (]τi (θ), τi (η)[pi ) ∪ Oθ,η.
If B2 ⊆ S3−i were true, then the consequence would be ∅ �=]η, θ [p1⊗p2∩B2 =
Oη,θ ∩ B2 and ∅ �=]θ, η[p1⊗p2∩B2 = Oθ,η ∩ B2. Because moreover {Oη,θ ∩
B2, Oθ,η ∩ B2} ⊆ {∅, B2} under this assumption, we would be able to conclude
that the non-empty set B2 would simultaneously be a subset of each of the two
disjoint sets ]η, θ [p1⊗p2 and ]θ, η[p1⊗p2 , which is impossible. Hence, B2 ⊆ Si is
true instead.
From B2 ⊆ Si it follows ∅ �=]η, θ [p1⊗p2∩B2 = τ−1

i (]τi (η), τi (θ)[pi ) ∩ B2

and, likewise, ]θ, η[p1⊗p2∩B2 = τ−1
i (]τi (θ), τi (η)[pi ) ∩ B2. Therefore, ∅ �=

]τi (η), τi (θ)[pi ∩τi (B2) and ∅ �=]τi (θ), τi (η)[pi∩τi (B2). Hence, τi (B1) and
τi (B2) cross in pi . Because δp1⊗p2(α1, α2) ∈ δpi (τi (α1), τi (α2)) ∈ �(p3−i )Z by
Lemma6.7 (c), that proves X({p1⊗p2}) ⊆ X({p1, p2})+gcd(�({p1, p2}))Z.
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6.1.4 Behavior of Z under erasing turns

The effect of the erasing operation (defined in Sect. 4.3.3) on Z is too complicated to
treat well abstractly beyond the following observations.

Lemma 6.9 Let p ∈ P◦• be any partition, let T be any turn in p and let ε be the map
which sends the points of E(p, T ) to their former positions in p.

(a) σE(p,T )(S) = σp(ε(S)) for any set S of points in E(p, T ).
(b) ]α, β[E(p,T )= ε−1(]ε(α), ε(β)[p\T ) for any points α �= β of E(p, T ).
(c) δE(p,T )(α, β) = δp(ε(α), ε(β)) for any points α and β of E(p, T ).

Proof.

(a) If c is the coloring of p, then by definition E(p, T ) has the coloring c ◦ ε. Since ε

maps lower points to lower points and upper ones to upper ones, the normalized
color of any point γ in E(p, T ) is hence the same as the normalized color of ε(γ )

in p.
(b) By distinguishing cases depending on where T is located and which combination

of lower points and upper points one is considering, one can show that any triple
(γ1, γ2, γ3) of pairwise distinct points of E(p, T ) is ordered in E(p, T ) if and
only if (ε(γ1), ε(γ2), ε(γ3)) is ordered in p. If one keeps in mind that the image
of ε is the complement of T , the claim follows from that.

(c) If Pp denotes the set of all points of p, then ε−1(Pp\T ) is that of E(p, T ). Hence,
by Part (a), if α = β, then T being neutral in p implies

δE(p,T )(α, β) = �(E(p, T )) = σE(p,T )(ε
−1(Pp\T ))

= σp(Pp\T ) = σp(Pp) − σp(T ) = �(p)

= δp(α, β).

Now, let α �= β instead. Because {ε(α), ε(β)} ∩ T = ∅, exactly one of the
triples ({ε(α)}, T , {ε(β)}) and ({ε(β)}, T , {ε(α)}) of pairwise disjoint consec-
utive sets in p is ordered in p. In the first case, T ⊆]ε(α), ε(β)[p proves
σp(]ε(α), ε(β)[p\T ) = σp(]ε(α), ε(β)[p) − σp(T ) = σp(]ε(α), ε(β)[p). And,
in the second one, the same result σp(]ε(α), ε(β)[p\T ) = σp(]ε(α), ε(β)[p)
follows by ]ε(α), ε(β)[p∩T = ∅. Thus, Parts (a) and (b) let us infer
σE(p,T )(]α, β[E(p,T )) = σp(]ε(α), ε(β))[p) either way. Hence, Part (a) and the
definitions of δE(p,T ) and δp show

δE(p,T )(α, β) = 1
2σE(p,T )({α}) + σE(p,T )(]α, β[E(p,T )) + 1

2σE(p,T )({β})
= 1

2σp({ε(α)}) + σp(]ε(α), ε(β)[p) + 1
2σp({ε(β)})

= δp(ε(α), ε(β)),

as we had claimed.
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6.2 Total color sum

The first family of elements Q ∈ Q is chosen such that all components except the one
for � are trivial. That means we restrict the allowed total color sums of partitions.

Remark 6.10 For anym ∈ {0}∪N the setRQ with Q = (N, Z,mZ, Z, Z, Z) is exactly
the set of all partitions whose total color sum is a multiple of m.

No further constraints on p ∈ P◦• are imposed by the other components of Q via
Z({p}) ≤ Q since these conditions are satisfied by any partition.

Lemma 6.11 [12, Lemma 2.6] For any m ∈ {0} ∪ N the set RQ, where

Q = (N, Z,mZ, Z, Z, Z),

is a category of two-colored partitions.

Proof We use the Alternative Characterization (Lemma 4.3) to show that RQ is a
category. By Remark 6.10 it suffices to show that �({ · }) ⊆ mZ is stable under the
alternative category operations.

Rotation:According to Lemma 6.4 for any r ∈ {�, ⤸,�, �} and p ∈ RQ , it holds
that �({pr }) ⊆ �({p}) ⊆ mZ. Thus, �({ · }) ⊆ mZ is stable under rotations.

Verticolor reflection: Lemma 6.6 and −mZ = mZ show �({ p̃}) ⊆ −�({p}) ⊆
mZ for all p ∈ RQ , proving that �({ · }) ⊆ mZ is preserved by verticolor reflection

Tensor product: Given {p1, p2} ⊆ RQ , we can employ Lemma 6.8 (c) to infer
�({p1 ⊗ p2}) ⊆ gcd(�({p1, p2}))Z ⊆ mZ since �({p1, p2}) ⊆ mZ. In conclusion,
�({ · }) ⊆ mZ is invariant under tensor products.

Erasing: Lastly, for any p ∈ RQ with total set of points Pp and any turn T in p,
if ε is the map which sends the points of E(p, T ) to their original locations in p, then
�(E(p, T )) = σE(p,T )(ε

−1(Pp\T )) = σp(Pp\T ) = σp(Pp) − σp(T ) = �(p) ∈
mZ by Lemma 6.9 (a) because σp(T ) = 0. That concludes the proof.

6.3 Block size and color sum

A second subset of Q gathers elements where only the components for F and V are
non-trivial. So, we only impose (interdependent) conditions on the sizes and color
sums of blocks.

Remark 6.12

(a) For Q = ({1, 2},±{0, 1, 2}, Z, Z, Z, Z) (Part (a) of the ensuing Lemma 6.13) the
set RQ is simply P◦•≤2, the set of all partitions all of whose blocks have at most
two legs.
Only the F-condition in Z({ · }) ≤ Q is important; The apparent V -constraint is
merely a reflection of the one for F : Any singleton block must have color sum 1
(◦) or −1 (•), and any pair block can only ever be neutral (◦• or •◦) or have color
sums 2 (◦◦) or−2 (••). And all the remaining conditions imposed by Z({ · }) ≤ Q
are trivially satisfied by any partition.
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(b) If Q = ({2},±{0, 2}, 2Z, Z, Z, Z) (Part (b) of Lemma 6.13), then RQ = P◦•
2 is

simply the set of all pair partitions. Again, the V -condition merely reflects the
F-constraint.
Likewise, the non-trivial value 2Z of the �-component of Q does not impose
any restriction on RQ not already placed by the F-constraints: For any partition
p ∈ P◦•,

�(p) = σp

⎛

⎝
⋃

B∈p

B

⎞

⎠ =
∑

B∈p

σp(B). (1)

Hence, �(p) = 2Z is a necessary consequence of V ({p}) ⊆ ±{0, 2}.
The conditions induced by the L-, K - and X -components of Q remain redundant.

(c) The setRQ with Q = ({2}, {0}, {0},∅, Z, Z) (Part (c) of Lemma 6.13) is identical
to P◦•

2,nb, the set of all pair partitions with neutral blocks. (See [7] and [6] for a
classification of all its subcategories.)
In contrast to the two previous examples, the constraint on block color sums is
not merely a consequence of the range of allowed block sizes. The F-constraint
restrictsRQ to a subset ofP◦•

2 and the V -constraint prohibits non-neutral blocks.
However, the non-trivial value {0} of the�-component of Q imposes no additional
restrictions: �(p) = 0 is, by Eq. (1), a necessary consequence of V ({p}) = {0}
for any p ∈ P◦•.
And also the non-trivial L-component ∅ of Q provides no additional constraints
beyond the ones induced by the F- and V -components: A pair block which is
neutral, i.e., has normalized coloring ◦• or •◦, cannot have subsequent legs of the
same normalized color. Thus, for any partition p ∈ P◦•

2 with V ({p}) = {0} it
automatically holds that L({p}) = ∅.

(d) Lastly, RQ where Q = ({1, 2},±{0, 1}, Z,∅, Z, Z) (Part (d) of Lemma 6.13) is
given exactly by the set of all partitions all of whose blocks have at most two legs
and all of whose pair blocks are neutral.
As said before, restricting F to {1, 2} reduces the allowed set of block color sums to
±{0, 1, 2} and the values−2 and 2 can then only stem from pair blocks. Excluding
these two values then forces all pair blocks to be neutral. So, as in Part (c), the F-
and V -components induce constraints in their own right.
However, the non-trivial value ∅ of the L-component of Q is merely a reflection
of the F- and V -constraints because neutral pair blocks cannot have subsequent
legs of the same normalized color.

Lemma 6.13 The setRQ is a category of partitions if

(a) Q = ({1, 2},±{0, 1, 2}, Z, Z, Z, Z),
(b) Q = ({2},±{0, 2}, 2Z, Z, Z, Z),
(c) Q = ({2}, {0}, {0},∅, Z, Z), or
(d) Q = ({1, 2},±{0, 1}, Z,∅, Z, Z).

Proof We treat the four claims largely simultaneously. Let Q be one of the four ele-
ments named in Claims (a)–(d) and let fQ be the first and vQ the second component

123



Journal of Algebraic Combinatorics

of Q. Remark 6.12 showed that, if ( fQ, vQ) = ({1, 2},±{0, 1, 2}) (Case (a)) or
( fQ, vQ) = ({2},±{0, 2}) (Case (b)), then

RQ = {p ∈ P◦• | F({p}) ⊆ fQ},

and that, if ( fQ, vQ) = ({2}, {0}) (Case (c)) or ( fQ, vQ) = ({1, 2},±{0, 1})
(Case (d)), then

RQ = {p ∈ P◦• | (F, V )({p}) ≤ ( fQ, vQ)}.

We use the Alternative Characterization (Lemma 4.3) to show that RQ is a category.
As ∈ RQ is clearly true, that means it suffices to prove that in Cases (a) and (b) the
condition F({ · }) ⊆ fQ and inCases (c) and (d) the condition (F, V )({ · }) ≤ ( fQ, vQ)

are stable under rotations, tensor products, verticolor reflection and erasing turns.
Rotation: For any p ∈ RQ and r ∈ {�, ⤸,�, �} Lemma 6.4 implies

(F, V )({pr }) ≤ (F, V )({p}) ≤ ( fQ, vQ). Thus, (F, V )({ · }) ≤ ( fQ, vQ) is stable
under rotations.

Verticolor reflection: Given arbitrary p ∈ RQ , we are guaranteed by Lemma 6.6
that (F, V )({ p̃}) ≤ (F,−V )({p}) ≤ ( fQ,−vQ). Since −vQ = vQ this proves that
the constraint (F, V )({ · }) ≤ ( fQ, vQ) is preserved by verticolor reflection.

Tensor product: According to Lemma 6.8 (a) and (b), for any {p1, p2} ⊆ RQ , it
holds that (F, V )({p1⊗ p2}) ≤ (F, V )({p1, p2}) ≤ ( fQ, vQ). Hence, tensor products
respect (F, V )({ · }) ≤ ( fQ, vQ).

Erasing: Lastly, let p ∈ RQ be arbitrary and let T be a turn in p. We have to show
F({E(p, T )}) ⊆ fQ and, but just in Cases (c) and (d), also V ({E(p, T )}) ⊆ vQ . Let
ε be the map which sends the points of E(p, T ) back to their former places in p.

Let B be an arbitrary block of E(p, T ). What we need to prove is |B| ∈ fQ as well
as σE(p,T )(B) ∈ vQ , the latter however just in Cases (c) and (d). If ε(B) ∈ p, then
|B| ∈ fQ and, by Lemma 6.9 (a), also σE(p,T )(B) = σp(ε(B)) ∈ vQ since we have
assumed p ∈ RQ . Thus, suppose ε(B) /∈ p. Then, there are (not necessarily distinct)
blocks B1 and B2 of p with B1 ∩ T �= ∅ and B2 ∩ T �= ∅, with T ⊆ B1 ∪ B2 and with
ε(B) = (B1 ∪ B2)\T �= ∅.

Step 1: Block size. We prove |B| ∈ fQ . Since ε is injective, since |T | = 2 and
since T ⊆ B1 ∪ B2,

|B| = |ε(B)| = |B1 ∪ B2| − |T | =
{

|B1| + |B2| − 2 if B1 �= B2,

|B1| − 2 if B1 = B2.
(2)

By definition, fQ = {1, 2} or fQ = {2}. We treat the two cases individually.
Case 1.1: Parts (a) and (d). If fQ = {1, 2}, then in particular both |B1| ≤ 2 and

|B2| ≤ 2. Hence, no matter whether B1 = B2 or B1 �= B2, Eq. (2) implies |B| ≤ 2,
meaning |B| ∈ fQ , as was claimed.

Case 1.2: Parts (b) and (c). If we assume fQ = {2} instead, then |B1| = |B2| = 2.
Now, B1 = B2 is impossible since otherwise Eq. (2) would imply |B| = 0, contra-
dicting B �= ∅. Rather, B1 �= B2 must be true. Then, |B| = 2 ∈ fQ by Eq. (2).
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Step 2:Block color sum.We show σp(B) ∈ vQ in Cases (c) and (d). Since σp(T ) =
0 and T ⊆ B1 ∪ B2, we infer by Lemma 6.9 (a):

σE(p,T )(B) = σp(ε(B))

= σp((B1 ∪ B2)\T )

= σp((B1 ∪ B2)\T ) + σp(T )

= σp(B1 ∪ B2)

=
{

σp(B1) + σp(B2) if B1 �= B2,

σp(B1) if B1 = B2.
(3)

Cases (c) and (d) correspond to the possibilities ( fQ, vQ) = ({2}, {0}) and ( fQ, vQ) =
({1, 2},±{0, 1}). We treat them individually.

Case 2.1: Part (c). If we assume ( fQ, vQ) = ({2}, {0}), i.e., in particular σp(B1) =
σp(B2) = 0, then, irrespective of whether B1 = B2 or B1 �= B2, Eq. (3) proves
σE(p,T )(B) = 0.

Case 2.2: Part (d). Now, let ( fQ, vQ) = ({1, 2},±{0, 1}). Then, B1 and B2 are
singletons or pair blocks and {σp(B1), σp(B2)} ⊆ ±{0, 1}. If both B1 and B2 were
singletons, then B1 ∩ T �= ∅ and B2 ∩ T �= ∅ and T ⊆ B1 ∪ B2 would imply
B1 ∪ B2 = T and thus the contradiction B = (B1 ∪ B2)\T = ∅. Hence, we know
that at least one of the blocks B1 and B2 must be a pair. The assumptions p ∈ RQ and
vQ = ±{0, 1} force the pair blocks of p to be neutral (since non-neutral pair blocks
have color sums 2 or −2). It follows σp(B1) = 0 or σp(B2) = 0. Now, no matter
whether B1 = B2 or B1 �= B2, Eq. (3) proves σE(p,T )(B) ∈ ±{0, 1} = vQ , which
concludes the proof.

Remark 6.14 Althoughwe are only interested in non-hyperoctahedral categories in this
article, it deserves pointing out that the proof of Lemma 6.13 also shows the existence
of certain hyperoctahedral categories. Namely, the set {p ∈ P◦• | V ({p}) ⊆ gZ} is a
category for every g ∈ {0} ∪ N.

In order to see this, we again use the Alternative Characterization (Lemma 4.3)
of categories. Lemmata 6.4, 6.6 and 6.8 (b) imply that V ({ · }) ⊆ gZ is stable under
rotations, verticolor reflection and tensor products. While verifying Lemma 6.13, we
showed that for any p ∈ P◦•, any turn T in p and any B ∈ E(p, T ) the following is
true if ε is the map from the definition of the erasing operation: Either ε(B) ∈ p and
then σE(p,T )(B) = σp(B), or ε(B) /∈ p and then there are {B1, B2} ⊆ p such that
σE(p,T )(B) = σp(B1) + σp(B2) or σE(p,T )(B) = σp(B1). Thus, V ({E(p, T )}) ⊆
V ({p}) ∪ (V ({p}) + V ({p})), which proves the claim.

6.4 Color distances between legs of the same block

For our third family of elements of Q, the L- and K -components are non-trivial,
implying constraints on the color distances between subsequent legs of the same block.
In part, this translates to a condition on the color distances between arbitrary—not
just subsequent—legs.
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Lemma 6.15 Let m ∈ {0} ∪ N and

Q = (N, Z,mZ,mZ,mZ, Z)

and let p ∈ P◦• be arbitrary. Then, Z({p}) ≤ Q if and only if δp(α, β) ∈ mZ. for
any B ∈ p and any {α, β} ⊆ B.

Proof Suppose δp(α, β) ∈ mZ for each block B of p and any two legs α and β of B.
Since we can especially choose α �= β and ]α, β[p∩B = ∅ it follows (L, K )({p}) ≤
(mZ,mZ). On the other hand, picking α = β shows �(p) = δp(α, α) ∈ mZ, which
lets us conclude �({p}) ⊆ mZ. As (F, V , X)({p}) ≤ (N, Z, Z) is trivially true, that
proves one implication.

To show the converse, let Z({p}) ≤ Q, let B ∈ p and let {α, β} ⊆ B. If α = β,
then δp(α, β) = �(p) ∈ mZ as �({p}) ⊆ mZ. Thus, we can assume α �= β. We can
further suppose that ]α, β[p∩B �= ∅ since otherwise δp(α, β) ∈ (L ∪ K )({p}) ⊆ mZ

by Z({p}) ≤ Q. Then, p has at least three points. If so, then we find iteratively by
moving from α in direction of β in accordance with the cyclic order a number n ∈ N of
legs γ1, . . . , γn of B such that, writing γ0 := α and γn+1 := β, the points γ0, . . . , γn+1
are pairwise distinct, such that (γ0, . . . , γn+1) is ordered and such that ]α, β[p∩B =
{γ1, . . . , γn}. Now, Lemma 3.2 (c) implies δp(α, β) ≡ ∑n

k=0 δp(γk, γk+1) mod m.
Because ]γk, γk+1[∩B = ∅ and thus δp(γk, γk+1) ∈ (L∪K )({p}) ⊆ mZ by Z({p}) ≤
Q for any k ∈ {0} ∪ [[n]], that proves the claim.

Remark 6.16

(a) For any m ∈ {0} ∪ N, if Q = (N, Z,mZ,mZ,mZ, Z) (Part (a) of Lemma 6.17
below), then RQ is given by the set of all partitions such that the color distance
between any two legs of the same block is a multiple of m, as seen in Lemma 6.15.
Mostly, it is the L- and K -components of Q inducing the characteristic constraints
via Z({ · }) ≤ Q. The F-, V - and X -conditions are redundant. However, the
�-condition generally is not. And it is generally not implied by the L- and K -
constraints either. (For example, if p = ⊗(m+1), then L({p}) = K ({p}) = ∅ ⊆
mZ but �({p}) = {m + 1} � mZ if m ≥ 2).

(b) If Q = ({1, 2},±{0, 1, 2}, 2mZ,m+2mZ, 2mZ, Z) (Part (b) of Lemma 6.17) for
somem ∈ N, then the setRQ is a subset of the set from Part (a): Still, any partition
p ∈ P◦• is required to have color distances in mZ between any two legs of the
same block if it is to be an element ofRQ . However, now, additionally, all blocks
of pmust have sizes one or two, the total color sum�(p)must be amultiple of 2m
(and not just m) and, most importantly, the color distances between subsequent
legs of the same block must satisfy two different conditions, depending on their
normalized colors. Since blocks can have size two at most, two legs of the same
block are subsequent if and only if they are distinct. Hence, RQ is the set of all
partitions such that

• every block has at most two legs,
• the total color sum is an even multiple of m,
• the color distance between any two distinct legs of the same block is
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– an odd multiple of m if they have identical normalized colors and
– an even multiple of m if they have different normalized colors.

Also, note that, in contrast to Part (a), the parameter m = 0 is not allowed.
For points α and β in p ∈ P◦•, saying

δp(α, β) ∈ σp({α, β})
2

m + 2mZ.

is a helpful technical way of expressing that the distance of the points is an odd
multiple of m if they have the same normalized color and an even multiple other-
wise.
The constraints induced via Z({ ·}) ≤ Q by the F-, V - and �-components are
non-trivial and not implied by the L- and K -restrictions (for the same reason as
before). Of course, the X -condition is still redundant.

Lemma 6.17 For any m ∈ {0} ∪ N the set RQ is a category of partitions if

(a) Q = (N, Z,mZ,mZ,mZ, Z), or
(b) Q = ({1, 2},±{0, 1, 2}, 2mZ,m+2mZ, 2mZ, Z).

Proof. The twoclaims canbeverified largely simultaneously.LetQ beoneof the tuples
given in Claims (a) and (b) and abbreviate Q = ( fQ, {0}∪(± fQ), kQ, lQ, kQ, Z). We
prove thatRQ is a category bymeans of theAlternativeCharacterization (Lemma 4.3).
Clearly, ∈ RQ . By Lemma 6.11 the condition �({ · }) ⊆ kQ is stable under rotation,
tensor products, verticolor reflection and erasing turns. The constraint (F, V )({ · }) ≤
( fQ, {0} ∪ (± fQ)) is trivially preserved in Case (a), and it is preserved in Case (b) as
well according to Lemma 6.13 (a). Hence, it is sufficient to show that (L, K )({ · }) ≤
(lQ, kQ) is invariant under the alternative category operations.

Rotation: By Lemma 6.4 it holds (L, K )({pr }) ≤ (L, K )({p}) ≤ (lQ, kQ) for any
p ∈ RQ and any r ∈ {�, ⤸,�, �}. Consequently, (L, K )({ · }) ≤ (lQ, kQ) is stable
under rotations.

Verticolor reflection: Given p ∈ RQ , Lemma 6.6 lets us infer that (L, K )({ p̃}) ≤
(−L,−K )({ p̃}) ≤ (−lQ,−kQ). Because −lQ = lQ and −kQ = kQ we have thus
proven that verticolor reflection preserves (L, K )({ · }) ≤ (lQ, kQ).

Tensor product: Let {p1, p2} ⊆ RQ be arbitrary. Then, �({p1, p2}) ⊆ kQ in par-
ticular. Since kQ is a subgroup ofZwe conclude gcd(�({p1, p2}))Z ⊆ kQ . Therefore,
Lemma 6.8 (d) implies L({p1⊗ p2}) ⊆ L({p1, p2})+gcd(�({p1, p2}))Z ⊆ lQ +kQ
and K ({p1 ⊗ p2}) ⊆ K ({p1, p2}) + gcd(�({p1, p2}))Z ⊆ kQ + kQ . Because
lQ + kQ ⊆ lQ and kQ + kQ ⊆ kQ by definition of lQ and kQ this proves
(L, K )({p1 ⊗ p2}) ≤ (lQ, kQ). In conclusion, (L, K )({ · }) ≤ (lQ, kQ) is respected
by tensor products.

Erasing: Lastly, let T be any turn in any p ∈ RQ and let ε be the map
which sends the points of E(p, T ) to their original locations in p. We show
(L, K )({E(p, T )}) ≤ (lQ, kQ). Let B ∈ E(p, T ) and {α, β} ⊆ B be arbitrary with
α �= β and ]α, β[E(p,T )∩B = ∅.Whatwe then have to prove is that δE(p,T )(α, β) ∈ lQ
if σE(p,T )({α, β}) �= 0 and that δE(p,T )(α, β) ∈ kQ if σE(p,T )({α, β}) = 0. By
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Lemma 6.9 (a) and (c) it suffices to show

δp(ε(α), ε(β))
!∈

{
lQ if σp({ε(α), ε(β)}) �= 0,

kQ otherwise.
(4)

To prove (4) we now distinguish the two Cases (a) and (b).
Case 1: Part (a). Since lQ = kQ = mZ, Assertion (4) simplifies to the claim

δp(ε(α), ε(β))
!∈ mZ. (5)

Because Q is as required by Lemma 6.15, we can immediately deduce (5) from
p ∈ RQ if ε(α) and ε(β) belong to the same block in p. Thus, it remains to assume
that the blocks B1 of ε(α) and B2 of ε(β) in p are distinct and prove (5) under this
premise.

Step 1.1:Decomposing δp(ε(α), ε(β)). Because B1 �= B2 the definition of E(p, T )

requires the existence of α′ ∈ B1 ∩ T and β ′ ∈ B2 ∩ T . Lemma 3.2 (c) yields

δp(ε(α), ε(β)) ≡ δp(ε(α), α′) + δp(α
′, β ′) + δp(β

′, ε(β)) mod m,

where we have used the consequence �(p) ∈ mZ of p ∈ RQ . By this congruence,
Assertion (5) can be seen by proving that all summands on the right-hand side are
multiples of m. Hence, that is what we now show.

Step 1.2:Color distances of ε(α) and α′ and of ε(β) and β ′. Because {ε(α), α′} ⊆
B1 are legs of the same block of p and because p ∈ RQ Lemma 6.15 guarantees
δp(ε(α), α′) ∈ mZ. Likewise, {ε(β), β ′} ⊆ B2 implies δp(β

′, ε(β)) ∈ mZ.
Step 1.3: Color distance of α′ and β ′. Because B1 �= B2, necessarily α′ �= β ′ and

T = {α′, β ′}. As T is a turn the neighboring points α′ and β ′ have inverse normalized
colors. We infer δp(α

′, β ′) = 0 or δp(α
′, β ′) = �(p), depending on whether α′

precedes β ′ or the other way around. As �(p) ∈ mZ due to p ∈ RQ it thus follows
δp(α

′, β ′) ∈ mZ in any case. And that is what we needed to see.
Case 2:Part (b). In this case, lQ = m+2mZ and kQ = 2mZmean that Assertion (4)

can be expressed equivalently as

δp(ε(α), ε(β))
!∈ σp({ε(α), ε(β)})

2
m + 2mZ. (6)

If ε(B) ∈ p, then p ∈ RQ implies (6) immediately. Hence, we only need to prove (6)
for the case that ε(B) /∈ p. We want to use Lemma 3.2 (c) again. Hence, we must find
a suitable choice of points α′ and β ′ to decompose δp(ε(α), ε(β)) with.

Step 2.1: Finding points α′ and β ′. As ε(B) /∈ p there exist {B1, B2} ⊆ p with
B1 ∩ T �= ∅, with B2 ∩ T �= ∅, with T ⊆ B1 ∪ B2 and with ε(B) = (B1 ∪ B2)\T . In
particular, {ε(α), ε(β)} ⊆ B1 ∪ B2.

The points ε(α) and ε(β) belong to different blocks in p: If there existed i ∈ {1, 2}
with {ε(α), ε(β)} ∈ Bi , then it would follow Bi = {ε(α), ε(β)} since α �= β, since
ε is injective and since |Bi | ≤ 2 by p ∈ P◦•≤2. As {ε(α), ε(β)} ∩ T = ∅ that would
contradict Bi ∩ T �= ∅.
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By renaming B1 and B2, we can assume ε(α) ∈ B1 and ε(β) ∈ B2. Since distinct
blocks are disjoint, B1 ∩ B2 = ∅. Because {ε(α), ε(β)} ∩ T = ∅ and B1 ∩ T �= ∅ and
B2 ∩ T �= ∅ and because |B1| ≤ 2 and |B2| ≤ 2 we find α′ ∈ B1 ∩ T and β ′ ∈ B2 ∩ T
such that B1 = {ε(α), α′} and B2 = {ε(β), β ′}.

Step 2.2: Relating the normalized colors of ε(α), α′, ε(β) and β ′. Since B1 �= B2,
since ε(B) = (B1 ∪ B2)\T and since σp(T ) = 0,

σp({ε(α), ε(β)}) = σp(ε(B)) = σp(B1) + σp(B2)

= σp({ε(α), α′}) + σp({β ′, ε(β)}), (7)

as in the proof of Lemma 6.13.
Step 2.3: Color distances of ε(α) and α′ and of β ′ and ε(β). The assumption

p ∈ RQ furthermore guarantees

δp(ε(α), α′) ∈ σp({ε(α), α′})
2

m+2mZ

and δp(β
′, ε(β)) ∈ σp({β ′, ε(β)})

2
m+2mZ (8)

because {ε(α), α′} ⊆ B1 and α �= α′ on the one hand and {β ′, ε(β)} ⊆ B2 and β ′ �= β

on the other hand.
Step2.4:Color distance of α′ and β ′. Because T = {α′, β ′} is a turn, δp(α′, β ′) = 0

or δp(α
′, β ′) = �(p). From p ∈ RQ it follows �(p) ∈ kQ = 2mZ and thus

δp(α
′, β ′) ∈ 2mZ. (9)

We now have all ingredients to prove (6).
Step 2.5: Synthesis. Lemma 3.2 (c) yields

δp(ε(α), ε(β)) ≡ δp(ε(α), α′) + δp(α
′, β ′) + δp(β

′, ε(β)) mod 2m,

(9)≡ δp(ε(α), α′) + δp(β
′, ε(β)) mod 2m.

(8)≡ σp({ε(α), α′})
2

m + σp({β ′, ε(β)})
2

m mod 2m

(7)≡ σp({ε(α), ε(β)})
2

m mod 2m.

With the proof of (6) thus complete, so is the proof overall.

6.5 Color distances between legs of crossing blocks

The last family of elements of Q we treat exhibits non-trivial X -components.

Remark 6.18 If Q = (N, Z,mZ,mZ,mZ, Z\E) for any m ∈ {0} ∪ N and any E ⊆ Z

with E = −E = E + mZ (as in Lemma 6.19 below), we can employ Lemma 6.15
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to understand the set RQ . It is given by the set of all partitions such that the color
distance between any two legs of the same block is a multiple of m and such that,
whenever the color distance between any two points is an element of E , they belong
to non-crossing blocks.

While the F- and V -components of Q, of course, effectively induce no conditions
at all via Z({ · }) ≤ Q, the �-, L- and K -conditions are non-trivial and they are not
implied by the X -constraint.

Lemma 6.19 For any m ∈ {0} ∪ N and E ⊆ Z with E = −E = E + mZ the set RQ

is a category if

Q = (N, Z,mZ,mZ,mZ, Z\E).

Proof Let Q be of the kind described in the claim. Once more, we use the Alternative
Characterization (Lemma 4.3) to show that RQ is a category. By Lemma 6.17 (a) it
suffices to consider the X -component of Z , i.e., to prove that the constraint X({ · }) ⊆
Z\E is invariant under rotation, tensor products, verticolor reflection and erasing turns.

Rotation: With the help of Lemma 6.4 we can infer X({pr }) ⊆ X({p}) ⊆ Z\E
for any p ∈ RQ and any r ∈ {�, ⤸,�, �}. Thus, X({ · }) ⊆ Z\E is preserved by
rotations.

Verticolor reflection: For any p ∈ RQ it holds X({ p̃}) ⊆ −X({p}) ⊆ −Z\E by
Lemma 6.6. Since our assumption E = −E implies −Z\E = Z\E , this proves the
condition X({ · }) ⊆ Z\E stable under verticolor reflection.

Tensor product: Let {p1, p2} ⊆ RQ be arbitrary. Then, �({p1, p2}) ⊆ mZ

implies gcd(�({p1, p2}))Z ⊆ mZ. Consequently, Lemma 6.8 (d) yields X({p1 ⊗
p2}) ⊆ X({p1, p2}) + gcd(�({p1, p2}))Z ⊆ Z\E + mZ. As we have assumed
E = E +mZ, also Z\E = Z\E +mZ and thus X({p1 ⊗ p2}) ⊆ Z\E . In conclusion,
tensor products respect X({ · }) ⊆ Z\E .

Erasing: Let p ∈ RQ be arbitrary, let T be any turn in p and let ε be the mapping
which moves the points of E(p, T ) back to their original positions in p. We show
X({E(p, T )}) ⊆ Z\E . Let α1 and α2 be any points in E(p, T ) whose respective
blocks B1 and B2 cross in E(p, T ). By Lemma 6.9 (c) all we have to show is

δp(ε(α1), ε(α2)) /∈ E . (10)

If both ε(B1) ∈ p and ε(B2) ∈ p, then (10) is true by the assumption p ∈ RQ . Thus,
we only need to show (10) in the opposite case. If so, then, by nature of the erasing
operation, exactly one of the sets ε(B1) and ε(B2) is a block of p.

Step 1: Reduction to the case ε(B1) /∈ p. The assumption p ∈ RQ ensures�(p) ∈
mZ. Hence, Lemma 3.2 (b) implies δp(ε(α1), ε(α2)) ≡ −δp(ε(α2), ε(α1)) mod m.
Because we assume Z\E = −(Z\E) + mZ, that means δp(ε(α1), ε(α2)) ∈ Z\E
if and only if δp(ε(α2), ε(α1)) ∈ Z\E . Hence, it suffices to prove (10) for the case
ε(B1) /∈ p.

Step 2: Expressing δp(ε(α1), ε(α2)) as the color distance between some blocks
B1,i and ε(B2) of p. Since ε(B1) /∈ p there are (not necessarily distinct) blocks B1,1
and B1,2 of p with B1,1 ∩ T �= ∅, with B1,2 ∩ T �= ∅, with T ⊆ B1,1 ∪ B1,2 and

123



Journal of Algebraic Combinatorics

with ε(B1) = (B1,1 ∪ B1,2)\T . By renaming if necessary, we can always achieve
ε(α1) ∈ B1,1. We show that, for any β1 ∈ B1,1 ∪ B1,2 and any β2 ∈ ε(B2),

δp(ε(α1), ε(α2)) ≡ δp(β1, β2) mod m. (11)

Two cases must be distinguished.
Case 2.1: β1 and ε(α1) belong to the same block. Let β1 ∈ B1,1. By Lemma 3.2 (c),

δp(ε(α1), ε(α2)) ≡ δp(ε(α1), β1) + δp(β1, β2) + δp(β2, ε(α2)) mod m. (12)

According to Lemma 6.15, the assumption p ∈ RQ implies δp(ε(α1), β1) ∈ mZ and
δp(β2, ε(α2)) ∈ mZ since {ε(α1), β1} ⊆ B1,1 and {β2, ε(α2)} ⊆ ε(B2). Hence, the
only term on the right side of (12) possibly surviving is δp(β1, β2). That proves (11)
in this case.

Case 2.2: β1 and ε(α1) belong to different blocks.Now, suppose β1 ∈ B1,2 instead.
Since we have assumed B1,1 ∩ T �= ∅ and B1,2 ∩ T �= ∅ we can infer the existence
of γ1,1 ∈ B1,1 and γ1,2 ∈ B1,2 with γ1,1 �= γ1,2 and T = {γ1,1, γ1,2}. Again, we use
Lemma 3.2 (c) to derive

δp(ε(α1), ε(α2)) ≡ δp(ε(α1), γ1,1) + δp(γ1,1, γ1,2) + δp(γ1,2, β1)

+ δp(β1, β2) + δp(β2, ε(α2)) mod m.

(13)

All summands on the right-hand side of (13) except for possibly δp(β1, β2) are mul-
tiples of m:

Because T is a turn, γ1,1 and γ1,2 are neighbors of different normalized colors,
meaning δp(γ1,1, γ1,2) = 0 or δp(γ1,1, γ1,2) = �(p) ∈ mZ and thus δp(γ1,1, γ1,2) ∈
mZ in any case.

And, thanks to p ∈ RQ , from {ε(α1), γ1,1} ⊆ B1,1, from {γ1,2, β1} ⊆ B1,2 and
from {β2, ε(α2)} ⊆ ε(B2) follow δp(ε(α1), γ1,1) ∈ mZ and δp(γ1,2, β1) ∈ mZ and
δp(β2, ε(α2)) ∈ mZ according to Lemma 6.15.

Thus (13) verifies (11) in this case.
Step 3: Showing that one B1,i and ε(B2) cross in p. If we can establish that B1,1

and ε(B2) or B1,2 and ε(B2) cross each other in p, then Eq. (11) proves (10) as
Z\E = (Z\E) + mZ. So, this is all we have to show.

Because the blocks B1 and B2 cross in E(p, T ) we find points {χ1,1, χ1,2} ⊆ B1
and {η2, θ2} ⊆ B2 such that (χ1,1, η2, χ1,2, θ2) is ordered in E(p, T ) (and thus also
the tuple (ε(χ1,1), ε(η2), ε(χ1,2), ε(θ2)) in p). If ε(χ1,1) and ε(χ1,2) (each of which
is contained in B1,1 ∪ B1,2) both belong to B1,1 or both to B1,2, then we have already
found the desired crossing with ε(B2). Hence, we can assume that neither is the case,
i.e., that B1,1 �= B1,2 and that ε(χ1,1) and ε(χ1,2) belong to different blocks in p. If
ε(χ1,1) /∈ B1,1, then we rename χ1,1 ↔ χ1,2 and η2 ↔ θ2. Thus, we can achieve
that ε(χ1,1) ∈ B1,1 and ε(χ1,2) ∈ B1,2 while maintaining {η2, θ2} ⊆ B2 and while
keeping (χ1,1, η2, χ1,2, θ2) ordered.

Let γ1,1 and γ1,2 be as before, i.e., γ1,1 ∈ B1,1 ∩ T and γ1,2 ∈ B1,2 ∩ T . Since they
are neighbors, they have the same position in the cyclic order of p with respect to the
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tuple (ε(χ1,1), ε(η2), ε(χ1,2), ε(θ2)). Let i ∈ {1, 2} be such that γ1,i precedes γ1,3−i

in p. Then, the below table shows that, no matter how the points are arranged, we can
find a crossing between B1,1 and ε(B2) or between B1,2 and ε(B2):

ordered tuple crossing between
(ε(χ1,1), ε(η2), ε(χ1,2), ε(θ2), γ1,i , γ1,3−i ) (ε(η2), ε(χ1,2), ε(θ2), γ1,2) B1,2 and ε(B2)

(ε(χ1,1), ε(η2), ε(χ1,2), γ1,i , γ1,3−i , ε(θ2)) (ε(χ1,1), ε(η2), γ1,1, ε(θ2)) B1,1 and ε(B2)

(ε(χ1,1), ε(η2), γ1,i , γ1,3−i , ε(χ1,2), ε(θ2)) (ε(χ1,1), ε(η2), γ1,1, ε(θ2)) B1,1 and ε(B2)

(ε(χ1,1), γ1,i , γ1,3−i , ε(η2), ε(χ1,2), ε(θ2)) (γ1,2, ε(η2), ε(χ1,2), ε(θ2)) B1,2 and ε(B2)

So, in combination with what we showed in Step 2, that completes the proof.

6.6 Synthesis

As announced we can combine the previous results to prove that all sets defined in
Sect. 5 are categories. Recall Notation 5.6.

Theorem 6.20 For every Q ∈ Q the set RQ is a non-hyperoctahedral category:

R : Q → PCat◦•
NHO.

Proof For any Q′ ⊆ Q, by Lemma 6.2,

⋂
{RQ | Q ∈ Q′} = R⋂

× Q′ .

We show that for each Q ∈ Q there exists a set Q′ ⊆ Q such that Q = ⋂
×Q′ and

such that RQ′ is a category for each Q′ ∈ Q′. As PCat◦• is a complete lattice, that
then proves that RQ is a category of two-colored partitions for every Q ∈ Q. It is
straightforward to check that indeed ⊗ ∈ RQ or /∈ RQ for every Q ∈ Q.

For this proof only, we use names for specific elements of the set Q: The below
table applies for any m ∈ {0} ∪ N and E ⊆ Z with E = −E = E + mZ.

F V � L K X

F2 {2} ±{0, 2} 2Z Z Z Z 6.13 (b)
F≤2 {1, 2} ±{0, 1, 2} Z Z Z Z 6.13 (a)

V0 {2} {0} {0} ∅ Z Z 6.13 (c)
V01 {1, 2} ±{0, 1} Z ∅ Z Z 6.13 (d)

Sm N Z mZ Z Z Z 6.11
Km N Z mZ mZ mZ Z 6.17 (a)

K⋏m {1, 2} ±{0, 1, 2} 2mZ m+2mZ 2mZ Z 6.17 (b)
Xm,E N Z mZ mZ mZ Z\E 6.19

The corresponding setsRQ for all these elements Q ∈ Q are categories of partitions,
as shown by the respective lemma cited in the last column.

123



Journal of Algebraic Combinatorics

The ensuing table lists how each element of Q can be written as a meet in L of
the specific elements defined above. Here, u ∈ {0} ∪ N, m ∈ N, D ⊆ {0} ∪ [[�m

2 �]],
E ⊆ {0}∪N and N is a subsemigroup of (N,+). Recall N0 = ±N and N ′

0 = ±N∪{0}.

F V S L K X
⋂

×

{2} ±{0, 2} 2umZ mZ mZ Z F2,S2um,Km

{2} ±{0, 2} 2umZ m+2mZ 2mZ Z F2,S2um,K⋏m
{2} ±{0, 2} 2umZ m+2mZ 2mZ Z\mZ F2,S2um,K⋏m, Xm,mZ

{2} {0} {0} ∅ mZ Z V0,Km

{2} ±{0, 2} {0} {0} {0} Z\N0 F2,X0,N0

{2} {0} {0} ∅ {0} Z\N0 V0,X0,N0

{2} {0} {0} ∅ {0} Z\N ′
0 V0,X0,N ′

0{1, 2} ±{0, 1, 2} umZ mZ mZ Z\Dm F≤2,Sum,Xm,Dm

{1, 2} ±{0, 1, 2} 2umZ m+2mZ 2mZ Z\Dm S2um,K⋏m,Xm,Dm

{1, 2} ±{0, 1} umZ ∅ mZ Z\Dm V01,Sum,Xm,Dm

{1, 2} ±{0, 1, 2} {0} {0} {0} Z\E0 F≤2,X0,E0

{1, 2} ±{0, 1} {0} ∅ {0} Z\E0 V01,X0,E0

N Z umZ mZ mZ Z\Dm Sum,Xm,Dm

N Z {0} {0} {0} Z\E0 X0,E0

That concludes the proof.

7 Concluding remarks

The present article defined a family of sets RQ of two-colored partitions indexed by
elements Q of an index setQ and confirmed each such set to be a non-hyperoctahedral
category. This finding extends the previous classification results by Tarrago and the
second author from [12], by Gromada from [5] and by the authors from [7] and [6].
Most of those prior results describe the categories they classify both in terms of their
elements and their generators. The only exception is the so-called group case of cate-
gories, where only generators are known.

In the following, for eachnon-hyperoctahedral categoryC ⊆ P◦• from those articles
an index Q ∈ Q with C = RQ will be provided—except for the group case, where
only C ⊆ RQ will be clear at the moment and where C ⊇ RQ will be shown in a
future part of the article series.

Each category C from the literature will be referenced by, firstly, its name, i.e.,
symbol, from the respective article and, secondly, by the same graphical depictions
of the generating partitions employed there. However, the definition of C in terms of
its elements given in the article in question is not repeated here. That is because in
providing an index Q with C = RQ a full description of the elements of C is obtained
via the definition RQ = {p ∈ P◦• | Z({p}) ≤ Q}.
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7.1 Globally colorized non-crossing case

In [12, Theorem 7.1] Tarrago and the second author described all globally colorized
non-crossing categories. A category C ⊆ P◦• is said to be non-crossing if C ⊆ NC◦•
and globally colorized if ⊗ ∈ C. Five families of such categories exist. The non-
hyperoctahedral ones among those are tabled below, where k ∈ {0} ∪ N arbitrary.
Here, as in the following, the first column gives the name of the category, the second
a generator and columns three to eight a corresponding element of Q.

F V � L K X

Oglob(2k)
⊗k

, ⊗ {2} ±{0, 2} 2kZ 1+2Z 2Z ∅
B′
glob(k)

⊗k
, , ⊗ , ⊗ {1, 2} ±{0, 1, 2} kZ Z Z ∅

Bglob(2k)
⊗2k

, ⊗ , ⊗ {1, 2} ±{0, 1, 2} 2kZ 1+2Z 2Z ∅
Sglob(k)

⊗k
, , ⊗ , ⊗ N Z kZ Z Z ∅

7.2 Locally colorized non-crossing case

A category C ⊆ P◦• is said to be locally colorized if it is not globally colorized, i.e.,
if ⊗ /∈ C. All non-crossing locally colorized categories were found by Tarrago
and the second author in [12, Theorem 7.2]. The ensuing table, where r ∈ N\{1} and
u ∈ {0}∪N can be arbitrary, provides the correspondence for the non-hyperoctahedral
case.

F V � L K X

Oloc ∅ {2} {0} {0} ∅ {0} ∅
B′
loc(ur , r , 0)

⊗ur
, ⊗r ⊗r , {1, 2} ±{0, 1, 2} urZ rZ rZ ∅

, ⊗
B′
loc(2ur , 2r , r)

⊗2ur
, ⊗r+1 ⊗r−1 , {1, 2} ±{0, 1, 2} 2urZ r+2rZ 2rZ ∅

⊗2r ⊗2r , ⊗
Bloc(ur , r)

⊗ur
, ⊗r ⊗r , ⊗ {1, 2} ±{0, 1} urZ ∅ rZ ∅

Bloc(u, 1) ⊗u
, , ⊗ {1, 2} ±{0, 1} uZ ∅ Z ∅

B′
loc(0, 0, 0) , ⊗ {1, 2} ±{0, 1, 2} {0} {0} {0} ∅
Bloc(0, 0) ⊗ {1, 2} ±{0, 1} {0} ∅ {0} ∅
Sloc(ur , r)

⊗ur
, ⊗r ⊗r , N Z urZ rZ rZ ∅

, ⊗
Sloc(0, 0) , ⊗ N Z {0} {0} {0} ∅

7.3 Group case

If ∈ C, a category C ⊆ P◦• belongs to the group case. All such categories were
classified by Tarrago and the second author in [12, Theorem 8.3] in terms of their
generators. For each non-hyperoctahedral group case categoryC the table below,where
k runs through all of {0} ∪ N, gives an element Q ∈ Q with C ⊆ RQ . That much can
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be readily verified via the generators. In a future part of the present article series, it
will be shown that C ⊇ RQ holds as well.

F V � L K X

Ogrp,glob(2k)
⊗k

, ⊗ , {2} ±{0, 2} 2kZ Z Z Z

Ogrp,loc {2} ±{0, 2} {0} ∅ Z Z

Bgrp,glob(k)
⊗k

, ⊗ , ⊗ , {1, 2} ±{0, 1, 2} kZ Z Z Z

Bgrp,loc(k)
⊗k

, ⊗ , {1, 2} ±{0, 1, 2} kZ ∅ Z Z

Sgrp,glob(k)
⊗k

, , ⊗ , ⊗ , N Z kZ Z Z Z

7.4 Globally colorized case

Extending [12, Theorem 7.1], Gromada determined in [5, Theorem 3.10] all globally
colorized categories. Write u2k := ⊗k for each k ∈ N with u0 := ∅ and sk := ⊗k

for each k ∈ N with s0 := ∅. For every k ∈ {0} ∪ N the following table lists the
correspondences in the globally colorized non-hyperoctahedral case:

F V � L K X

Ogrp,glob(2k) u2k, , ⊗ {2} ±{0, 2} 2kZ Z Z Z

Ohl,glob(2k) u2k, , ⊗ {2} ±{0, 2} 2kZ 1+2Z 2Z Z

Oglob(2k) u2k, ⊗ {2} ±{0, 2} 2kZ 1+2Z 2Z ∅
Bgrp,glob(k) sk, ⊗ , , ⊗ {1, 2} ±{0, 1, 2} kZ Z Z Z

Bhl,glob(2k) s2k, ⊗ , , ⊗ {1, 2} ±{0, 1, 2} 2kZ 1+2Z 2Z Z

B′
glob(k) sk, , ⊗ {1, 2} ±{0, 1, 2} kZ Z Z ∅

Bglob(2k) s2k, ⊗ , ⊗ {1, 2} ±{0, 1, 2} 2kZ 1+2Z 2Z ∅
Sgrp,glob(k) sk, , ⊗ , , ⊗ N Z kZ Z Z Z

Sglob(k) sk, , ⊗ , ⊗ N Z kZ Z Z ∅

7.5 Neutral pair partitions

For every w ∈ N and all subsemigroups D and E of (N,+) such that N\D is finite
but non-empty and such that N\E is infinite, the following identities are valid:

F V � L K X

Sw
⊗w {2} {0} {0} ∅ wZ Z

S0 { ⊗v ⊗v }v∈N {2} {0} {0} ∅ {0} Z

IE {Br•([[k]]\E)}k∈N, {2} {0} {0} ∅ {0} Z\E0
IE∪{0} {Br•([[k]]\E)}k∈N {2} {0} {0} ∅ {0} Z\E ′

0
ID Br•(N\D), {2} {0} {0} ∅ {0} Z\D0

ID∪{0} Br•(N\D) {2} {0} {0} ∅ {0} Z\D′
0

IN {2} {0} {0} ∅ {0} {0}
IN0 ∅ {2} {0} {0} ∅ {0} ∅
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