Please use this identifier to cite or link to this item: doi:10.22028/D291-33841
Title: Almost all trees have quantum symmetry
Author(s): Junk, Luca
Schmidt, Simon
Weber, Moritz
Language: English
Title: Archiv der Mathematik
Volume: 115
Issue: 4
Pages: 367–378
Publisher/Platform: Springer Nature
Year of Publication: 2020
Free key words: Compact quantum groups
Quantum automorphism groups of graphs
Quantum symmetries of graphs
DDC notations: 500 Science
Publikation type: Journal Article
Abstract: From the work of Erdős and Rényi from 1963, it is known that almost all graphs have no symmetry. In 2017, Lupini, Mančinska, and Roberson proved a quantum counterpart: Almost all graphs have no quantum symmetry. Here, the notion of quantum symmetry is phrased in terms of Banica’s definition of quantum automorphism groups of finite graphs from 2005, in the framework of Woronowicz’s compact quantum groups. Now, Erdős and Rényi also proved a complementary result in 1963: Almost all trees do have symmetry. The crucial point is the almost sure existence of a cherry in a tree. But even more is true: We almost surely have two cherries in a tree—and we derive that almost all trees have quantum symmetry. We give an explicit proof of this quantum counterpart of Erdős and Rényi’s result on trees.
DOI of the first publication: 10.1007/s00013-020-01476-x
Link to this record: urn:nbn:de:bsz:291--ds-338415
hdl:20.500.11880/31156
http://dx.doi.org/10.22028/D291-33841
ISSN: 1420-8938
0003-889X
Date of registration: 16-Apr-2021
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Professorship: MI - Jun.-Prof. Dr. Moritz Weber
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
Junk2020_Article_AlmostAllTreesHaveQuantumSymme.pdf336,68 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons