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Almost all trees have quantum symmetry

Luca Junk , Simon Schmidt, and Moritz Weber

Abstract. From the work of Erdős and Rényi from 1963, it is known
that almost all graphs have no symmetry. In 2017, Lupini, Mančinska,
and Roberson proved a quantum counterpart: Almost all graphs have no
quantum symmetry. Here, the notion of quantum symmetry is phrased
in terms of Banica’s definition of quantum automorphism groups of finite
graphs from 2005, in the framework of Woronowicz’s compact quantum
groups. Now, Erdős and Rényi also proved a complementary result in
1963: Almost all trees do have symmetry. The crucial point is the al-
most sure existence of a cherry in a tree. But even more is true: We
almost surely have two cherries in a tree—and we derive that almost all
trees have quantum symmetry. We give an explicit proof of this quantum
counterpart of Erdős and Rényi’s result on trees.
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1. Introduction and main results. Erdős and Rényi [5] proved that almost all
graphs are asymmetric, in the following sense: When choosing a graph on n
vertices uniformly at random, the probability that its automorphism group is
trivial tends to 1 as n tends to infinity. In contrast to this, they also showed
that almost all trees are symmetric, i.e. the probability that the automorphism
group of a random tree on n vertices is trivial tends to 0 as n tends to infinity.

In recent years, the notion of a quantum automorphism group of a graph
was introduced by Banica in [1], modifying a preceding version by Bichon [3].
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It is a compact matrix quantum group in the sense of Woronowicz (see [15])
enlarging the usual automorphism group of a graph and providing a subtler
graph invariant. It is an interesting question, which graphs have a quantum
automorphism group that is strictly larger than their classical automorphism
group. In that case, we say that the graph has quantum symmetry. In general,
this question is very hard to answer. There are some sufficient criteria that one
can check but usually, there is no ’easy’ way to decide whether or not a graph
has quantum symmetry. For results about specific graphs or specific classes of
graphs, see [2], [9], [11].

Recently, Lupini, Mančinska, and Roberson proved a quantum version of
the first Erdős Rényi theorem mentioned in the beginning: Almost all graphs
are quantum asymmetric, i.e. the quantum automorphism group of almost all
graphs is trivial ([7]). A crucial ingredient in their proof is the so-called coherent
algebra of a graph. They show that it provides a new sufficient criterion for a
graph to be quantum asymmetric. We will give a few details of this in Section 4.

In this paper, we give a proof of a quantum analogue of the second Erdős
Rényi theorem mentioned above, namely: Almost all trees have quantum sym-
metry. The crucial ingredient of Erdős and Rényi’s proof is to show that almost
all trees contain a so-called cherry (two vertices of degree one ’dangling’ like a
twin cherry on a common third vertex) – indeed, by flipping this twin cherry,
we obtain a non-trivial automorphism. Interestingly, for proving the quantum
analogue of this, it is enough to show that almost all trees contain at least two
cherries from which we may derive the existence of two non-trivial automor-
phisms with disjoint supports. Applying a criterion of one of the authors of
this article [10] yields the result.

We summarize:

Theorem. (i) ([5]). Almost all graphs have no symmetry.
(ii) ([7]). Almost all graphs have no quantum symmetry.
(iii) ([5]). Almost all trees have symmetry.
(iv) Almost all trees have quantum symmetry.

Let us note that the almost sure existence of two cherries in a tree is
probably well-known to experts. Nevertheless, we give a direct proof of this
fact in order to present a complete and concise proof of the quantum version
of Erdős and Rényi’s result on trees.

2. Preliminaries. In this section, we give some mathematical background on
compact (matrix) quantum groups, graphs, and their (quantum) symmetries.

2.1. Graphs and trees. A graph is a tuple Γ = (V,E) where V is a non-empty
set of vertices and E ⊆ V × V is a set of edges (in particular, we don’t allow
a graph to have multiple edges between the same pair of vertices). It is called
finite if V is finite, and undirected if we have (i, j) ∈ E whenever (j, i) ∈ E.
An edge of the form (i, i) ∈ E is called a loop. If v ∈ V is a vertex, we define its
degree to be the number of neighbours of v, i.e. the number of vertices u ∈ V
such that (v, u) ∈ E.
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We will only be concerned with finite undirected graphs without loops and
without multiple edges. Furthermore, we will usually identify the vertex set V
with the set {1, . . . , n} where n = |V |.

A walk of length k in a graph Γ = (V,E) is a k-tuple (e1, . . . , ek) of edges
ej = (uj , vj) ∈ E such that vj = uj+1 for all j = 1, . . . k −1. It is called a cycle
if u1 = vk.
A graph is called connected if for every pair of vertices i, j ∈ V with i �= j,
there is a walk from i to j, i.e. u1 = i and vk = j. A tree is a connected graph
without cycles.

The adjacency matrix of a graph Γ = (V,E) is the matrix A = (aij)i,j∈V

with entries

aij :=

{
1 if (i, j) ∈ E,

0 otherwise.

2.2. Symmetries of graphs. An automorphism of a graph Γ = (V,E) is a
bijection σ : V → V that preserves adjacency and non-adjacency, i.e. (i, j) ∈ E
if and only if (σ(i), σ(j)) ∈ E for all i, j ∈ V . The set of all automorphisms
of Γ forms a group Aut(Γ) under composition and is called the automorphism
group of Γ. It can be identified with a subgroup of the symmetric group Sn

(where n = #V ) which can in turn be embedded as permutation matrices in
Mn(C). The automorphism group then has a nice description in terms of the
adjacency matrix A of Γ:

Aut(Γ) = {σ ∈ Sn | σA = Aσ} ⊆ Sn.

We call a graph Γ symmetric if there exists a non-trivial automorphism of
Γ, and asymmetric otherwise.

2.3. Compact matrix quantum groups. Compact matrix quantum groups were
first defined by Woronowicz [15] in an attempt to generalize compact matrix
groups. As a general reference for this, we refer the reader to [12], [8], or [14].

Definition 2.1. A compact matrix quantum group (CMQG) is a pair (B, u)
where B is a unital C∗-algebra and u = (uij)ni,j=1 is a matrix with entries in
B such that:

(i) B is generated (as a C∗-algebra) by the entries of u.
(ii) The ∗-homomorphism Δ : B → B ⊗ B, uij �→ ∑n

k=1 uik ⊗ ukj exists.
(iii) The matrix u and its transpose ut are invertible.

Example 2.2. Let G ⊆ GLn(C) be a compact matrix group and let (uij)ni,j=1

be the coordinate functions on G, i.e.

uij : G → C,

B = (bkl)nk,l=1 �→ bij .

Then the pair (C(G), u = (uij)ni,j=1), where C(G) is the algebra of continuous
complex-valued functions on G, is a compact matrix quantum group. Moreover,
all compact matrix quantum groups (B, u) with commutative C∗-algebra B
are of this form (see [12, Proposition 6.1.11]). So under the identification of G
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with (C(G), u), compact matrix quantum groups generalize classical compact
matrix groups.

Example 2.3. Another very important example of a compact matrix quantum
group is the quantum symmetric group S+

n defined by Wang in [13]. It is given
by the universal unital C∗-algebra

C(S+
n ) := C∗

(
uij , 1 ≤ i, j ≤ n | u∗

ij = u2
ij = uij ,

n∑
k=1

uik =
n∑

k=1

ukj = 1 ∀ i, j

)

and it can be interpreted as a quantum analogue of the classical symmetric
group Sn. Indeed, we have a surjective ∗-homomorphism ϕ : C(S+

n ) → C(Sn)
sending generators to coordinate functions, thus we can think of Sn as a quan-
tum subgroup of S+

n . The map ϕ is an isomorphism for n = 1, 2, 3 (so we
have S+

n = Sn for n = 1, 2, 3) but for n ≥ 4, C(S+
n ) is non-commutative and

infinite-dimensional – we then have more quantum permutations than ordinary
permutations.

2.4. Quantum symmetries of graphs. In 2003, Bichon [3] gave a definition of
a quantum automorphism group of a finite graph. It was modified by Banica
[1] in 2005. See also [11] for more on quantum symmetries of graphs.

Definition 2.4 ([1]). Let Γ = (V,E) be a graph on n vertices without multiple
edges and without loops and let A be its adjacency matrix. The quantum
automorphism group QAut(Γ) of Γ is defined as the compact matrix quantum
group with C∗-algebra

C(QAut(Γ)) := C(S+
n )

�〈uA = Au〉.
We have the inclusions Aut(Γ) ⊆ QAut(Γ) ⊆ S+

n and we say that Γ has
quantum symmetry if the first inclusion is strict, i.e. if and only if C(QAut(Γ))
is non-commutative.

3. The existence of two cherries. In this section, we show that almost all trees
contain at least two cherries. This is probably well-known to experts, but in
order to keep this article self-contained, we present a direct proof. We use this
in the next section to prove our main result about the quantum symmetries
of trees.

Definition 3.1. Let Γ = (V,E) be a graph. A triple (u1, u2, v) of vertices u1,
u2, v ∈ V is called a cherry if

(i) u1, u2, and v are pairwise distinct,
(ii) u1 and u2 are adjacent to v,
(iii) u1 and u2 have degree 1, and
(iv) v has degree 3.

Remark 3.2. If a graph contains a cherry (u1, u2, v), then it admits the non-
trivial automorphism that swaps u1 and u2 and fixes any other vertex. Hence
the graph has symmetry.
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Erdős and Rényi showed in [5] that almost all trees contain at least one
cherry, implying that almost all trees are symmetric. So one can rephrase their
result as follows.

Theorem 3.3 ([5]). Almost all trees contain at least one cherry, in the sense
that

lim
n→∞ P[Cn ≥ 1] = 1

where Cn is the number of cherries in a tree that is drawn uniformly at random
from the set of all trees on n vertices.

Corollary 3.4. Almost all trees have symmetry.

We will now show that even

lim
n→∞ P[Cn ≥ 2] = 1

holds in the above setting. The proof of this is only a slight modification of the
proof of Theorem 3.3. Note however that we use a somewhat different notion
of cherries than Erdős and Rényi. In their definition, the requirement (iv) from
ours is missing. This changes the formulas in the subsequent proofs by a small
degree in comparison with the original arguments in [5].

We begin by fixing some notation. For n ∈ N, let Tn be a tree on n vertices
and denote these vertices by v1, . . . , vn. For every choice of indices i1, i2, j ∈
{1, . . . , n}, we define

εi1,i2,j(Tn) :=

{
1 if (vi1 , vi2 , vj) is a cherry in Tn,

0 otherwise.

We equip the set of all labelled trees on n vertices with the uniform probability
measure, turning εi1,i2,j into a random variable.

Note furthermore that by Cayley’s formula, the number of labelled trees on
n vertices is nn−2. We will use this fact several times in the following proofs.

Lemma 3.5. We have

E[εi1,i2,j ] =
(n − 3)n−4

nn−2

for all pairwise distinct i1, i2, j ∈ {1, . . . , n}.
Proof. Since

E[εi1,i2,j ] =
|{trees on n vertices with a cherry at (i1, i2, j)}|

|{trees on n vertices}| ,

we only have to calculate the numerator, as the denominator is nn−2 by Cay-
ley’s formula.

Let T = (V,E) be a tree on n−3 vertices labelled with {1, . . . , n}\{i1, i2, j}.
By attaching a cherry (vi1 , vi2 , vj) at any vertex u ∈ V , we can construct a
tree on n vertices with a cherry at (i1, i2, j). On the other hand, any tree on
n vertices with a cherry at (i1, i2, j) can be constructed in this way. Since T
has n − 3 vertices, we have n − 3 possibilities for choosing u, thus there are
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(n − 3)(n − 3)n−5 = (n − 3)n−4 trees on n vertices with a cherry at (i1, i2, j),
so the claim follows. �

Lemma 3.6. Let n ≥ 5 and i1, i2, j1, i3, i4, j2 ∈ {1, . . . , n}. We have

E[εi1,i2,j1εi3,i4,j2 ] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(n−6)n−6

nn−2 if i1, i2, i3, i4, j1, j2 are all different,
(n−3)n−4

nn−2 if i1, i2, j1 are all different,
j1 = j2, and {i1, i2} = {i3, i4},

0 otherwise.

Proof. Similarly as above, we only have to calculate the numerator of

E[εi1,i2,j1εi3,i4,j2 ]

=
|{trees on n vertices with cherries at (i1, i2, j1) and (i3, i4, j2)}|

|{trees on n vertices}| .

So let T = (V,E) be a tree with vertices labelled with {1, . . . , n}\{j1, i1, i2, j2,
i3, i4}.

In the case that all labels j1, i1, i2, j2, i3, i4 are different from each other,
we can attach cherries (vi1 , vi2 , vj1) and (vi3 , vi4 , vj2) at any two vertices u1

and u2 of Γ and thereby construct a tree on n vertices with two cherries at
(i1, i2, j1) and (i3, i4, j2). On the other hand, every tree on n vertices with two
cherries at (i1, i2, j1) and (i3, i4, j2) can be constructed in this way. Since T has
n − 6 vertices, we have n − 6 possibilities for choosing u1 and u2 respectively.
Thus there are (n − 6)(n − 6)(n − 6)n−8 = (n − 6)n−6 trees on n vertices with
two cherries at (i1, i2, j1) and (i3, i4, j2).

In the case that j1, i1, i2 are distinct, j1 = j2, and {i1, i2} = {i3, i4}, we
can conclude, as in the case of three labels (see Lemma 3.5), that the number
of trees on n vertices with a cherry at (i1, i2, j1) is (n − 3)n−4.

In all other cases, there is no tree on n vertices with cherries at (i1, i2, j1)
and (i3, i4, j2). �

As in Theorem 3.3, we denote by Cn(Tn) the number of cherries in the tree
Tn on n vertices. With the notation from above, we can express this as

Cn(Tn) =
n∑

j=1

n∑
i1=1
i1 �=j

i1−1∑
i2=1
i2 �=j

εi1,i2,j(Tn). (3.1)

Lemma 3.7. The expectation of Cn is

E[Cn] =
1
2
n(n − 1)(n − 2)(n − 3)n−4 1

nn−2
=

n

2e3
+ O(1),

Proof. The number of 3-tuples (j, i1, i2) ∈ {1, . . . , n}3 such that all entries
are distinct is n(n − 1)(n − 2). The further condition that i2 < i1 halves this
number, so the expression in Equation (3.1) has n(n−1)(n−2)

2 summands. Hence,
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by Lemma 3.5,

E[Cn] =
n∑

j=1

n∑
i1=1
i1 �=j

i1−1∑
i2=1
i2 �=j

E[εi1,i2,j ] =
n∑

j=1

n∑
i1=1
i1 �=j

i1−1∑
i2=1
i2 �=j

(n − 3)n−4

nn−2

=
n(n − 1)(n − 2)

2
(n − 3)n−4

nn−2
.

It remains to show that this is asymptotically n
2e3 +O(1), i.e. we have to show

that the following expression is bounded:

n(n − 1)(n − 2)
2

(n − 3)n−4

nn−2
− n

2e3
=

n

2

(
(n − 1)(n − 2)

(n − 3)n−4

nn−2
− e−3

)

=
n

2

((
n − 3

n

)n−2

− e−3 + 3
(n − 3)n−3

nn−2
+ 2

(n − 3)n−4

nn−2

)

=
1
2

(
n

((
1 − 3

n

)n−2

− e−3

)
+ 3

(n − 3)n−3

nn−3
+ 2

(n − 3)n−4

nn−3

)
. (3.2)

The second and third summand in Term (3.2) converge to 3e−3 and 0 respec-
tively as n → ∞. So we have to check whether the first summand is bounded.
For large n, we have1(

1 − 3
n

)n−2

− e−3 = exp
(

(n − 2) log
(

1 − 3
n

))
− e−3

≈ exp
(

n

(−3
n

− 9
2n2

))
− e−3 = e−3e− 9

2n − e−3

≈ e−3

(
1 − 9

2n

)
− e−3 = −9e−3

2n
.

Hence n
((

1 − 3
n

)n−2 − e−3
)

is bounded and thus n(n−1)(n−2)
2

(n−3)n−4

nn−2 = n
2e3 +

O(1) as claimed. �

We now want to calculate the variance of Cn. For this, we need the second
moment.

Lemma 3.8. The second moment of Cn is

E[C2
n] =

(
1
4

n!
(n − 6)!

(n − 6)n−6 + n(n − 1)(n − 2)(n − 3)n−4

)
1

nn−2

=
n2

4e6
+ O(n).

1This calculation can be made rigorous by explicitly writing out a full Taylor expansion of
the logarithm and keeping track of the limit definition of the exponential function. As this
is tedious and does not add any further insight, we leave out the details.
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Proof. Let Tn be a random tree on n vertices. We first compute, using Equa-
tion 3.1,

E[C2
n] =

n∑
j1=1

n∑
i1=1
i1 �=j1

i1−1∑
i2=1
i2 �=j1

n∑
j2=1

n∑
i3=1
i3 �=j2

i3−1∑
i4=1
i4 �=j2

E[εi1,i2,j1εi3,i4,j2 ].

To apply the formulas from Lemma 3.6, we split this sum into the two cases
where j1, i1, i2, j2, i3, i4 are all different and where either j1 = j2 and i1 = i3,
i2 = i4 or j1 = j2 and i1 = i4, i2 = i3 and j1, i1, i2 are different.

E[C2
n] =

n∑
j1=1

n∑
i1=1
i1 �=j1

i1−1∑
i2=1
i2 �=j1

n∑
j2=1
j2 �=j1
j2 �=i1
j2 �=i2

n∑
i3=1
i3 �=j1
i3 �=i1
i3 �=i2
i3 �=j2

i3−1∑
i4=1
i4 �=j1
i4 �=i1
i4 �=i2
i4 �=j2

E[εi1,i2,j1εi3,i4,j2 ] (3.3)

+2
n∑

j1=1

n∑
i1=1
i1 �=j1

i1−1∑
i2=1
i2 �=j1

E[ε2i1,i2,j1 ]. (3.4)

The number of 6-tuples (j1, i1, i2, j2, i3, i4) ∈ {1, . . . , n}6 such that all entries
are different is n!

(n−6)! . Each of the further conditions that i2 < i1 and i4 < i3

halves this number. So the expression in Term (3.3) has 1
4

n!
(n−6)! summands.

By a similar argument, the expression in Term (3.4) has n(n−1)(n−2)
2 sum-

mands. Therefore, by Lemma 3.6 and analogous calculations as in the proof
of Lemma 3.7,

E[C2
n] =

1
4

n!
(n − 6)!

(n − 6)n−6

nn−2
+ n(n − 1)(n − 2)

(n − 3)n−4

nn−2

=
n2

4e6
+ O(n).

�

Lemma 3.9. The following holds for Cn:

(i) E[C2
n]

E[Cn]2
n→∞−−−−→ 1, (ii) E[(Cn−1)2]

E[Cn−1]2
n→∞−−−−→ 1,

(iii) Var[Cn]
E[Cn]2

n→∞−−−−→ 0, (iv) Var[Cn−1]
E[Cn−1]2

n→∞−−−−→ 0.

Proof. (i) Using Lemma 3.7 and Lemma 3.8, we calculate

E[C2
n]

E[Cn]2
=

n2

4e6 + O(n)(
n
2e3 n + O(1)

)2 =
1

4e6 n2 + O(n)
1

4e6 n2 + O(n)
n→∞−−−−→ 1.

(ii) Again, by using Lemma 3.7 and Lemma 3.8, we get

E[(Cn − 1)2]
E[Cn − 1]2

=
E[C2

n] − 2 E[Cn] + 1
E[Cn]2 − 2 E[Cn] + 1

=
n2

4e6 + O(n) − n
e3 + O(1) + 1(

n
2e3 + O(1)

)2 − n
e3 + O(1) + 1
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=
1

4e6 n2 + O(n)
1

4e6 n2 + O(n)
n→∞−−−−→ 1.

(iii) + (iv) As Var[X]
E[X]2 = E[X2]

E[X]2 − 1, we obtain (iii) and (iv) from (i) and (ii)
respectively.

�

Theorem 3.10. Almost all trees have at least two cherries, i.e.

lim
n→∞ P[Cn ≥ 2] = 1.

Proof. Using Chebyshev’s inequality and Lemma 3.9, we have that

P[Cn = 0] ≤ P
[|Cn − E[Cn]| ≥ E[Cn]

] ≤ Var[Cn]
E[Cn]2

n→∞−−−−→ 0

as well as

P[Cn = 1] = P[Cn − 1 = 0] ≤ Var[Cn − 1]
E[Cn − 1]2

n→∞−−−−→ 0.

So P[Cn ≥ 2] = 1 − P[Cn = 0] − P[Cn = 1] n→∞−−−−→ 1 which completes the
proof. �

4. Asymptotics of (quantum) symmetries of graphs and trees. From Theo-
rem 3.10 and the following criterion from [10], we may derive that almost all
trees have quantum symmetry.

Let Γ = (V,E) be a graph and let σ : V → V be an automorphism of Γ.
The set

{v ∈ V | σ(v) �= v}
is called the support of σ.

Proposition 4.1 ([10, Theorem 2.2]). Let Γ be a graph. If there exist two non-
trivial automorphisms σ, τ of Γ with disjoint support, then Γ has quantum
symmetry.

This also makes the importance of cherries clear. If a graph contains a
cherry, it has a non-trivial automorphism of order two which swaps the two
vertices of degree one in the cherry. So the graph has symmetry. If a graph has
two cherries, it has two non-trivial disjoint automorphisms of order two. So by
the above proposition, it has quantum symmetry. From this, we can conclude
our main result, building on Theorem 3.10.

Theorem 4.2. Almost all trees have quantum symmetry.

For the convenience of the reader, let us briefly describe the arguments of
[7] for the non-existence of quantum symmetry for graphs.

A subset A ⊆ Mn(C) is called a coherent algebra if it is a selfadjoint unital
subalgebra of Mn(C) both with respect to ordinary matrix multiplication as
well as with respect to entrywise matrix multiplication (Schur product).

A class of examples of coherent algebras can be obtained from group ac-
tions: Let G be a group acting on a finite set X with n elements and let
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R1, . . . , Rs be the orbits of the induced action of G on X ×X (these are some-
times called orbitals). For each Ri (i ∈ {1, . . . , s}), we define its characteristic
matrix A(i) as

A(i)
xy :=

{
1 if (x, y) ∈ Ri,

0 otherwise.

Then the linear span of these matrices is a coherent algebra.
One can also associate a coherent algebra to a graph Γ by considering the

coherent algebra generated by its adjacency matrix, i.e. the intersection of all
coherent algebras containing the adjacency matrix of Γ. This is then called the
coherent algebra of Γ and denoted by CA(Γ).

It is a well-known fact that the coherent algebra of a graph provides a
sufficient criterion for a graph to be asymmetric:

Proposition 4.3. Let Γ = (V,E) be a graph on n vertices. Then we have

CA(Γ) = Mn(C) ⇒ Aut(Γ) = {id}.

This is useful from a computational point of view since the coherent algebra
of a graph can be computed in polynomial time using the two-dimensional
Weisfeiler-Leman algorithm (for details on this, see [6]), whereas it is generally
hard to compute the automorphism group of a graph or even to check whether
or not it is trivial.

One of the key insights of Lupini, Mančinska, and Roberson was that we
can strengthen Proposition 4.3 to the following.

Proposition 4.4 ([7]). Let Γ = (V,E) be a graph on n vertices. Then we have

CA(Γ) = Mn(C) ⇒ QAut(Γ) = {id}.

Now, Babai and Kucera proved that almost all graphs have a maximal
coherent algebra.

Proposition 4.5. ([4]). Almost all graphs Γ satisfy CA(Γ) = Mn(C).

Summarizing all of the above, we obtain:

Theorem 4.6. (i) ([5]). Almost all graphs have no symmetry.
(ii) ([7]). Almost all graphs have no quantum symmetry.
(iii) ([5]). Almost all trees have symmetry.
(iv) Almost all trees have quantum symmetry.

Proof. (i) This follows from Proposition 4.5 and Proposition 4.3.
(ii) By combining Proposition 4.5 and Proposition 4.4, we obtain the claimed

result.
(iii) By Theorem 3.10, almost all trees have in particular one cherry. So their

automorphism group contains a copy of Z2.
(iv) This is exactly the statement of Theorem 4.2.

�
Remark 4.7. Note that Lupini, Mančinska, and Roberson in fact showed that
QAut(Γ) = {id} for almost all graphs, but this implies in particular that
QAut(Γ) = Aut(Γ) for almost all graphs, which is the actual definition of
having no quantum symmetry.
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