Please use this identifier to cite or link to this item: doi:10.22028/D291-33751
Title: An Existence Theory for Gravity–Capillary Solitary Water Waves
Author(s): Groves, Mark
Language: English
Title: Water Waves
Publisher/Platform: Springer Nature
Year of Publication: 2021
Free key words: Solitary waves
Dirichlet–Neumann operator
Korteweg-de Vries equation
Nonlinear Schrödinger equation
DDC notations: 500 Science
Publikation type: Journal Article
Abstract: In the applied mathematics literature solitary gravity–capillary water waves are modelled by approximating the standard governing equations for water waves by a Korteweg-de Vries equation (for strong surface tension) or a nonlinear Schrödinger equation (for weak surface tension). These formal arguments have been justified by sophisticated techniques such as spatial dynamics and centre-manifold reduction methods on the one hand and variational methods on the other. This article presents a complete, self-contained account of an alternative, simpler approach in which one works directly with the Zakharov–Craig–Sulem formulation of the water-wave problem and uses only rudimentary fixed-point arguments and Fourier analysis.
DOI of the first publication: 10.1007/s42286-020-00045-7
Link to this record: urn:nbn:de:bsz:291--ds-337516
hdl:20.500.11880/31087
http://dx.doi.org/10.22028/D291-33751
ISSN: 2523-3688
2523-367X
Date of registration: 8-Apr-2021
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Professorship: MI - Prof. Dr. Mark Groves
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
Groves2021_Article_AnExistenceTheoryForGravityCap.pdf565,67 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons