Please use this identifier to cite or link to this item: doi:10.22028/D291-33214
Title: On the Borisov–Nuer conjecture and the image of the Enriques‐to‐K3 map
Author(s): Aprodu, Marian
Kim, Yeongrak
Language: English
Title: Mathematische Nachrichten
Volume: 293
Issue: 6
Pages: 1044-1052
Publisher/Platform: Wiley
Year of Publication: 2020
Free key words: Borisov–Nuer conjecture
Enriques surface
Jacobian Kummer surface
numerically polarized Enriquessurface
DDC notations: 004 Computer science, internet
510 Mathematics
Publikation type: Journal Article
Abstract: We discuss the Borisov–Nuer conjecture in connection with the canonical maps from the moduli spaces ℳ𝑎𝐸𝑛,ℎ of polarized Enriques surfaces with fixed ℎ∈𝑈⊕𝐸8(−1) to the moduli space ℱ𝑔 of polarized K3 surfaces of genus g with 𝑔=ℎ2+1 , and we exhibit a naturally defined locus Σ𝑔⊂ℱ𝑔 . One direct consequence of the Borisov–Nuer conjecture is that Σ𝑔 would be contained in a particular Noether–Lefschetz divisor in ℱ𝑔 , which we call the Borisov–Nuer divisor and we denote by ℬ𝒩𝑔 . In this short note, we prove that Σ𝑔∩ℬ𝒩𝑔 is non‐empty whenever (𝑔−1) is divisible by 4. To this end, we construct polarized Enriques surfaces (𝑌,𝐻𝑌) , with 𝐻2𝑌 divisible by 4, which verify the conjecture. In particular, when we consider the moduli space of (numerically) polarized Enriques surfaces which contains such (𝑌,𝐻𝑌) , the conjecture also holds for any other polarized Enriques surface (𝑌′,𝐻′𝑌) contained in the same moduli.
DOI of the first publication: 10.1002/mana.201900226
Link to this record: urn:nbn:de:bsz:291--ds-332142
hdl:20.500.11880/30562
http://dx.doi.org/10.22028/D291-33214
ISSN: 1522-2616
0025-584X
Date of registration: 5-Feb-2021
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Professorship: MI - Keiner Professur zugeordnet
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
mana.201900226.pdf217,35 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons