Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
doi:10.22028/D291-33214
Titel: | On the Borisov–Nuer conjecture and the image of the Enriques‐to‐K3 map |
VerfasserIn: | Aprodu, Marian Kim, Yeongrak |
Sprache: | Englisch |
Titel: | Mathematische Nachrichten |
Bandnummer: | 293 |
Heft: | 6 |
Seiten: | 1044-1052 |
Verlag/Plattform: | Wiley |
Erscheinungsjahr: | 2020 |
Freie Schlagwörter: | Borisov–Nuer conjecture Enriques surface Jacobian Kummer surface numerically polarized Enriquessurface |
DDC-Sachgruppe: | 004 Informatik 510 Mathematik |
Dokumenttyp: | Journalartikel / Zeitschriftenartikel |
Abstract: | We discuss the Borisov–Nuer conjecture in connection with the canonical maps from the moduli spaces ℳ𝑎𝐸𝑛,ℎ of polarized Enriques surfaces with fixed ℎ∈𝑈⊕𝐸8(−1) to the moduli space ℱ𝑔 of polarized K3 surfaces of genus g with 𝑔=ℎ2+1 , and we exhibit a naturally defined locus Σ𝑔⊂ℱ𝑔 . One direct consequence of the Borisov–Nuer conjecture is that Σ𝑔 would be contained in a particular Noether–Lefschetz divisor in ℱ𝑔 , which we call the Borisov–Nuer divisor and we denote by ℬ𝒩𝑔 . In this short note, we prove that Σ𝑔∩ℬ𝒩𝑔 is non‐empty whenever (𝑔−1) is divisible by 4. To this end, we construct polarized Enriques surfaces (𝑌,𝐻𝑌) , with 𝐻2𝑌 divisible by 4, which verify the conjecture. In particular, when we consider the moduli space of (numerically) polarized Enriques surfaces which contains such (𝑌,𝐻𝑌) , the conjecture also holds for any other polarized Enriques surface (𝑌′,𝐻′𝑌) contained in the same moduli. |
DOI der Erstveröffentlichung: | 10.1002/mana.201900226 |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-332142 hdl:20.500.11880/30562 http://dx.doi.org/10.22028/D291-33214 |
ISSN: | 1522-2616 0025-584X |
Datum des Eintrags: | 5-Feb-2021 |
Fakultät: | MI - Fakultät für Mathematik und Informatik |
Fachrichtung: | MI - Mathematik |
Professur: | MI - Keiner Professur zugeordnet |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
mana.201900226.pdf | 217,35 kB | Adobe PDF | Öffnen/Anzeigen |
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons