Please use this identifier to cite or link to this item:
doi:10.22028/D291-26522 | Title: | A 2D-variant of a theorem of Uraltseva and Urdaletova for higher order variational problems |
| Author(s): | Bildhauer, Michael Fuchs, Martin |
| Language: | English |
| Year of Publication: | 2009 |
| DDC notations: | 510 Mathematics |
| Publikation type: | Other |
| Abstract: | If \Omega is a domain in \mathbb{R}^{2} and if u:\Omega\rightarrow\mathbb{R} locally minimizes the energy \int_{\Omega}\left[h_{1}(\left|(\nabla^{2}u)_{I}\right|)+h_{2}(\left|(\nabla^{2}u)_{II}\right|)\right]dx, where (\nabla^{2}u)_{I}, (\nabla^{2}u)_{II} denotes a decomposition of the Hessian matrix \nabla^{2}u, then we prove the higher integrability and even the continuity of \nabla^{2}u under rather general assumptions imposed on the N-functions h_{1}, h_{2}. |
| Link to this record: | urn:nbn:de:bsz:291-scidok-47654 hdl:20.500.11880/26578 http://dx.doi.org/10.22028/D291-26522 |
| Series name: | Preprint / Fachrichtung Mathematik, Universität des Saarlandes |
| Series volume: | 231 |
| Date of registration: | 6-Jun-2013 |
| Faculty: | MI - Fakultät für Mathematik und Informatik |
| Department: | MI - Mathematik |
| Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
| File | Description | Size | Format | |
|---|---|---|---|---|
| preprint_231_09.pdf | 202,67 kB | Adobe PDF | View/Open |
Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.

