Please use this identifier to cite or link to this item: doi:10.22028/D291-26522
Title: A 2D-variant of a theorem of Uraltseva and Urdaletova for higher order variational problems
Author(s): Bildhauer, Michael
Fuchs, Martin
Language: English
Year of Publication: 2009
DDC notations: 510 Mathematics
Publikation type: Other
Abstract: If \Omega is a domain in \mathbb{R}^{2} and if u:\Omega\rightarrow\mathbb{R} locally minimizes the energy \int_{\Omega}\left[h_{1}(\left|(\nabla^{2}u)_{I}\right|)+h_{2}(\left|(\nabla^{2}u)_{II}\right|)\right]dx, where (\nabla^{2}u)_{I}, (\nabla^{2}u)_{II} denotes a decomposition of the Hessian matrix \nabla^{2}u, then we prove the higher integrability and even the continuity of \nabla^{2}u under rather general assumptions imposed on the N-functions h_{1}, h_{2}.
Link to this record: urn:nbn:de:bsz:291-scidok-47654
Series name: Preprint / Fachrichtung Mathematik, Universität des Saarlandes
Series volume: 231
Date of registration: 6-Jun-2013
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
preprint_231_09.pdf202,67 kBAdobe PDFView/Open

Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.