Please use this identifier to cite or link to this item:
doi:10.22028/D291-26452 | Title: | Maintaining the minimal distance of a point set in less than linear time |
| Author(s): | Smid, Michiel |
| Language: | English |
| Year of Publication: | 1990 |
| DDC notations: | 004 Computer science, internet |
| Publikation type: | Report |
| Abstract: | Consider a set of n points in d-dimensional space. It is shown that the ordered sequence of O(n^{2/3}) smallest distances defined by these points can be computed in optimal O(nlog n) time and O(n) space. Here, distances are measured in an arbitrary L_{t}-metric, where 1\leq t\leq\infty. This result is used to give a dynamic data structure of linear size, that maintains the minimal distance of the n points in O(n^{2/3}log n) time per update. |
| Link to this record: | urn:nbn:de:bsz:291-scidok-51445 hdl:20.500.11880/26508 http://dx.doi.org/10.22028/D291-26452 |
| Series name: | Technischer Bericht / A / Fachbereich Informatik, Universität des Saarlandes |
| Series volume: | 1990/06 |
| Date of registration: | 3-Apr-2013 |
| Faculty: | MI - Fakultät für Mathematik und Informatik |
| Department: | MI - Informatik |
| Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
| File | Description | Size | Format | |
|---|---|---|---|---|
| fb14_1990_06.pdf | 14,32 MB | Adobe PDF | View/Open |
Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.

