Please use this identifier to cite or link to this item: doi:10.22028/D291-26452
Title: Maintaining the minimal distance of a point set in less than linear time
Author(s): Smid, Michiel
Language: English
Year of Publication: 1990
DDC notations: 004 Computer science, internet
Publikation type: Report
Abstract: Consider a set of n points in d-dimensional space. It is shown that the ordered sequence of O(n^{2/3}) smallest distances defined by these points can be computed in optimal O(nlog n) time and O(n) space. Here, distances are measured in an arbitrary L_{t}-metric, where 1\leq t\leq\infty. This result is used to give a dynamic data structure of linear size, that maintains the minimal distance of the n points in O(n^{2/3}log n) time per update.
Link to this record: urn:nbn:de:bsz:291-scidok-51445
Series name: Technischer Bericht / A / Fachbereich Informatik, Universität des Saarlandes
Series volume: 1990/06
Date of registration: 3-Apr-2013
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Informatik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
fb14_1990_06.pdf14,32 MBAdobe PDFView/Open

Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.