Please use this identifier to cite or link to this item:
doi:10.22028/D291-26450 | Title: | A worst-case algorithm for semi-online updates on decomposable problems |
| Author(s): | Smid, Michiel |
| Language: | English |
| Year of Publication: | 1990 |
| DDC notations: | 004 Computer science, internet |
| Publikation type: | Report |
| Abstract: | An alternative description, and a more straightforward analysis, of Dobkin and Suri´s algorithm to maintain the maximum of a symmetric bivariate function is given. Furthermore, the amortized update time of this algorithm is made worst-case. As an application of the resulting algorithm, it follows e.g. that the diameter (or closest pair) of a planar point set can be maintained under semi-online updates in O((log n)^{2}) time per update in the worst case. A simplified version of the algorithm is applied to obtain a data structure for decomposable searching (resp. set.) problems, in which semi-online updates can be performed efficiently, even in the worst case. The amortized version of this algorithm is an extension of Bentleys logarithmic method. |
| Link to this record: | urn:nbn:de:bsz:291-scidok-51422 hdl:20.500.11880/26506 http://dx.doi.org/10.22028/D291-26450 |
| Series name: | Technischer Bericht / A / Fachbereich Informatik, Universität des Saarlandes |
| Series volume: | 1990/03 |
| Date of registration: | 3-Apr-2013 |
| Faculty: | MI - Fakultät für Mathematik und Informatik |
| Department: | MI - Informatik |
| Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
| File | Description | Size | Format | |
|---|---|---|---|---|
| fb14_1990_03.pdf | 46,77 MB | Adobe PDF | View/Open |
Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.

