Please use this identifier to cite or link to this item: doi:10.22028/D291-26450
Title: A worst-case algorithm for semi-online updates on decomposable problems
Author(s): Smid, Michiel
Language: English
Year of Publication: 1990
DDC notations: 004 Computer science, internet
Publikation type: Report
Abstract: An alternative description, and a more straightforward analysis, of Dobkin and Suri´s algorithm to maintain the maximum of a symmetric bivariate function is given. Furthermore, the amortized update time of this algorithm is made worst-case. As an application of the resulting algorithm, it follows e.g. that the diameter (or closest pair) of a planar point set can be maintained under semi-online updates in O((log n)^{2}) time per update in the worst case. A simplified version of the algorithm is applied to obtain a data structure for decomposable searching (resp. set.) problems, in which semi-online updates can be performed efficiently, even in the worst case. The amortized version of this algorithm is an extension of Bentleys logarithmic method.
Link to this record: urn:nbn:de:bsz:291-scidok-51422
hdl:20.500.11880/26506
http://dx.doi.org/10.22028/D291-26450
Series name: Technischer Bericht / A / Fachbereich Informatik, Universität des Saarlandes
Series volume: 1990/03
Date of registration: 3-Apr-2013
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Informatik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
fb14_1990_03.pdf46,77 MBAdobe PDFView/Open


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.