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Abstract

An alternative description, and a more straightforward analysis, of Dobkin and Suri’s
algorithm to maintain the maximum of a symmetric bivariate function is given. Further-
more, the amortized update time of this algorithm is made worst-case. As an application
of the resulting algorithm, it follows e.g. that the diameter (or closest pair) of a planar
point set can be maintained under semi-online updates in O((log n)?) time per update in
the worst case. A simplified version of the algorithm is applied to obtain a data structure
for decomposable searching (resp. set) problems, in which semi-online updates can be
perforiicd efficiently, even in the worst case. The amortized version of this algorithm is
ar extension of Bentley’s logarithmic method.

1 Introduction

In the past decade, much work has been done on the design of general techniques to dynamize
static data structures, that do not allow objects to be inserted or deleted cfficiently, into
dynamic ones, that do allow such operations. This research was initiated by the work of
Bentley [2|, who introduced the logarithmic method. This method transforms any static data
structure that solves a decomposable searching problem, into a structure in which objects
can be inserted efficiently, at the cost of a slight increase in query time. A decomposable
searching problem is a problem that can be solved for a set V' in constant time, if the problem
is solved for sets A and B that partition V. The strength of this technique lies in the fact
that it applies to any structure that solves a query problem of this type. Later, many other
techniques were designed for decomposable searching problems. See Bentley and Saxe [3],
Overmars [11] for an overview of these techniques.

The first of these general techniques resulted in data structures in which only insertions
can be performed, and the insert times are amortized. Later, it was shown that many of
these data structures can be transformed into structures in which objects can be inserted
efficiently even in the worst case. See [11], where many of these worst-case algorithms are
given.

For the class of decomposable searching problems, however, it is still difficult to design
fully dynamic data structures, in which also objects can be deleted efficiently. For some
subclasses, general techniques are available. An example of such a class are the decomposable



counting problems. (See [3]|). For problems such as the nearest neighbor searching problem—
which is clearly decomposable—there is, however, no data structure known, in which objects
can be inserted and deleted in o(n) time, and in which simultaneously queries can be solved
in polylogarithmic time.

Other examples of problems, for which it is not known whether fully dynamic data
structures exist in which arbitrary updates can be performed in o(n) time, are the problems
of maintaining the diameter and the closest pair of a planar point set.

Therefore, one possible direction is to consider restricted types of updates. For example,
Edelsbrunner and Overmars [7] give general techniques to design data structures for decom-
posable searching problems in which all queries, insertions and deletions are known at the
start of the algorithm.

Another type of updates was recently introduced by Dobkin and Suri [5]. They give a
general technique to design a data structure for maintaining the maximum of a symmetric
bivariate function, in which semi-online updates can be performed. Here, a sequence of
updates is called semi-online, if the insertions are on-line—i.e., they arrive in an unknown
order—but when an object is inserted, we are told how long it will stay, or that it will remain
present forever. That is, with each inserted object, we are told how many updates from the
moment of insertion, the object will be deleted. As an application of their method, they
obtain a data structure that maintains the diameter (or closest pair) of a planar point set in
amortized O((logn)?) time per update. A simplified version of their data structure can be
applied to decomposable searching problems. In this way, they get data structures for these
problems, in which semi-online updates can be performed efficiently.

In this paper, an alternative description of Dobkin and Suri’s algorithm is given. This
description hns the advantage, that the runtime of the algorithm can be analyzed in a more
straight! . ward way. (Dobkin and Suri bound the runtime of their algorithm using recurrence
relations.) This algorithm has an efficient amortized time complexity, and Dobkin and Suri
conjecture that this amortized complexity can be made worst-case, in case all insertions and
deletions are known before the algorithm starts. In the present paper, this conjecture is
proved, even for semi-online updates. It follows e.g. that the diameter (or closest pair) of
a set of points in the plane can be maintained under semi-online updates, at the cost of
O((logn)?*) time per update, in the worst case.

Just as in [5], the algorithm is adapted to decomposable searching problems. The amor-
tized version of this algorithm is an extension of Bentley’s logarithmic method [2]: if we use
the algorithm in case there are only insertions and no deletions, we get exactly Bentley’s
algorithm. The worst-case version of the adapted algorithm leads to a data structure for
decomposable searching problems in which semi-online updates can be performed efficiently,
at the cost of a logarithmic increase in query time. For example, we get a data structure in
which nearest neighbor queries can be solved in O((logn)?) time, and in which semi-online
updates take O((logn)?) time in the worst case.

As a new application, we adapt the algorithm, such that the answer of a decomposable
set problem can be maintained efficiently, when semi-online updates are performed. This
leads e.g. to a data structure of size O(n), that maintains the convex hull of n points in
three-dimensional space, at the cost of O(n) time per semi-online update. At present, the
best data structure for this problem has size O(nloglogn) and also linear update time, for
arbitrary updates. So by restricting ourselves to semi-online updates, we improve upon the
space complexity.

The rest of this paper is organized as follows. In Section 2, we introduce the decomposa-
bility properties of symmetric bivariate functions. In Section 3, the amortized algorithm



to maintain the maximum of such functions i1s presented. In Section 4, we transform this
amortized algorithm into a worst-case algorithm. In Sections 5, 6 and 7, we apply the given
algorithms to the problems of maintaining the diameter and closest pair of a point set, to
general decomposable searching problems, and to decomposable set problems. Finally, in
Section 8, we give some concluding remarks.

2 The decomposability properties

Let T be a set of objects, and let f : T'XxT — R be a symmetric function, i.e. f(z,y) = f(y, )
for all « and y in T. The problem to be studied in the following sections, is the following:
we are given a subset V of T', and we are asked to maintain the maximum value of f w.r.t.
this set V', under insertions and deletions of objects in V.

We introduce some notations. If p € T, and if V 1s a subset of T, then

V)= .
f(p,V) = max f(p.q)
If A and B are subsets of T, then

fF(A, B) := max , B) = max max .

f(4, B) := max f(p, B) = max max f(p, q)
The following two lemmas introduce the decomposability properties that enable us to
design efficient data structures for maintaining the maximum of f under semi-online updates.

Lemma 1 let f:T xT — R be a symmetric function, and let p be an object in T. If
Vi,..., V.. are pairunse disjoint subsets of T, then

fp,Viu...uVy,) =max(f(p,V1),--., f(p,Vam))-

Proof: To compute the maximum of f(p,q), where ¢ ranges over ViU ..UV, it is sufficient
to compute the maximum of f(p,gq) for ¢ € V;, for each i, and then to take the maximum of
all these maxima. O

Lemma 2 If f:TXT — R s a symmetric function, and if Vy,...,V,, are pairwise disjoint
subsets of T', the union of which 1s equal to V, then
: = Vi,Viu .. U V,). 1
max f(p,q) = max f(Vi ) (1)
Proof. It is clear that the left-hand side of (1) is at least equal to the right-hand side.

Choose z and y such that f(z,y) is maximal over all pairs in V. Let 1 < j, k < m, such
that 2 € V; and y € V}.. Since f is symmetric, we may assume that j < k. Then

fV;,Viu. uVy,) = f(e,y) = max f(p,q).
p,g€EV

Hence, the right-hand side of (1) is at least equal to the left-hand side. O

As an example, suppose we want to maintain the diameter of a planar point set, i.e.,
the largest distance between any pair of points in this set. Let T' be the set of all points in
the plane. For p and ¢ points in T, let f(p,q) be the distance between p and ¢q. Then the
maximum of f over all pairs of points in V', is equal to the diameter of V. Also, f(p,V)



denotes the maximal distance between p and any point in V', and f(A4, B) is equal to the
maximal distance between points in A and B.

Other examples of symmetric functions that occur frequently in the theory of algorithms
and data structures, are given in [5]. Note that we can also consider the above notions if
we replace all occurrences of “max” by “min”. In general, we then want to maintain the
minimum value of f among all pairs of distinct points of V. In this case, the algorithms to
be presented have to be modified slightly. (See Section 5.)

3 An amortized algorithm for maintaining the maximum of
a symmetric bivariate function

In this section, we give an alternative description of Dobkin and Suri’s algorithm for main-
taining the maximum valiue of a symmetric bivariate function, when semi-online updates are
performed.

Recall that a sequence of insertions and deletions is called semi-online, if the insertions
arrive online, but when an object is inserted, we are told how long it will be present. That
is, when an object is inserted, we are told how many updates from that moment the object
will be deleted, or that the object will remain present forever.

Let f: T xT — R be a symmetric function, and let V be a subset of T', for which we
want to maintain the maximum of f. Assume we have a data structure DS(V) that stores
the set V, such that queries of the form “compute f(p,V) for p € T” can be computed
efficiently. Let S(n), P(n) and Q(n) denote the size of the data structure DS(V), the time
needed te build 1t, and the time needed to answer a query of the above form, respectively.
Here, 7. denotes the cardinality of the set V.

We assume that these three functions are non-decreasing and smooth, where a function g
is called smooth if g(O(n)) = O(g(n)). Furthermore, we assume that S(n)/n and P(n)/n
are non-decreasing.

The theorem to be proved is the following:

Theorem 1 (Dobkin and Suri) There exzists a data structure of size O(S(n)), such that
the mazimum value of the symmetric function f can be maintained under semi-online updates
n

0 (P(n) logn + Q(n)logn + (log n)2>

n
amoriized time per update.
Before we can give the data structure and the corresponding algorithm, we need some

definitions. Let m be a positive integer, and assume that we perform a sequence of 2™
updates. We number these updates from 1 to 2™.

Definition 1 Let 0 < 7 < m. A sequence of 2 consecutive updates is called a block at
level 4, if the first of these updates has number j2* + 1, for some 0 < j < 2™m™*.

So for each 7, the sequence of 2™ updates is partitioned into blocks at level i, where the
first block consists of update 1 to 2¢, the second block consists of update 2° + 1 to 2'*!, etc.



Definition 2 Suppose we are processing update k. Let 0 < ¢ < m. Then the current block
at level 7 is the block at level i, that starts at update j2' + 1, where j = |(k - 1)/2|. The
next block at level 7 1s the block at level 7, that follows immediately after the current block
at level i. The previous block at level 7 1s defined simalarly.

So the current block at level ¢ is the unique block at level ¢ to which k& belongs.

The data structure : Let V be a subset of T of cardinality n. Let m = |log(n/2)], i.e.,
the integer m satisfies 2™ < n/2 < 2™+ We maintain the maximum of f under a sequence
of 2™ semi-online updates. These updates are numbered 1,2,...,2™.

1. At each moment, the set V is partitioned into subsets Vy,Vy,...,V,,. For 1 <1 < m,
the set V; consists of (not necessarily all) objects in V' that are still present after the
current block at level 7 is completed. Furthermore, Vo = V' \ U, V;. (Some of the V;’s
may be empty.)

[S%]

[Fach set V; is stored in a data structure DS(V;) and in a list, that we call for simpli-
city Vi.

3. Each object p in V contains a pointer to a list containing the values f;(p) :== f(p,Vj),
for j = ¢,...,m, in this order. Here ¢ is such that p € V;. Also, with the list of p, we
store the maximum value max(p) of the f;(p)’s. By Lemma 1, we have

max(p) = f(p,ViU ... U Vp).

4. Ther¢ 15 an array A(0 : m) that contains the values A(Z) := max,ecy, (max(p)), for
i -0,1,...,m. Hence, A(z) is equal to f(V;,V; U ... UV,,). Finally, we store the
maximum value max(f) of this array. By Lemma 2, we have

max(f) = bt f(p,q)-

The algorithm to be presented below, maintains this partition of V', such that the set V;
has size at most ¢ 2¢, for 0 < i < m, where ¢ is a constant independent of 1. (We do not
prove the upper bound on the size of the V;’s. The proof is similar to that of Lemma 7,
where we prove the more difficult case for the worst-case algorithm.) It follows that if an
object is to be deleted—by construction, this object is in the set Vo—it is stored in a small
data structure. Furthermore, a set V; is fixed for the current block at level ¢, so no objects
are deleted from this set. Therefore, the data structure DS(V;) does not have to be changed
during the current block at level 4, i.e., during a block of 2* updates.

The basic idea of the algorithm is the following: New objects are inserted at level 0.
Then, the object gradually moves to higher levels, the structures at which remain fixed for
an ever increasing amount of updates. At the moment that an object 1s to be deleted soon,
this object gradually moves down to level O, where it arrives at the moment of its deletion.

Initialization: First, we walk along the set V', and select all objects that are still present
after the sequence of 2™ updates. These objects are put in the set V,,. Also during this
walk, we select the object (if it exists) that will be deleted in the first update, and put it
in V. Then, we walk along the remaining list. If p is in this list, and if it will be deleted in
the d-th update, then p is put in set V;, where 7 = [logd] — 1.



Now we store each set V; in a list—that we call V;-—and we build a data structure DS(V;)
for 1t.

Next, we do the following for 2 = 0,...,m: For each object p in V;, compute f;(p) :=
f(p,V;) using the data structure DS(V;), for j = 1,...,m, and store these values in a list.
Also, compute the maximum max(p) of the f;(p)’s, (md store it with the list of p. Then,
compute the maximum of the values max(p), where p ranges over all objects in V;, and set
its value to A(z).

Finally, we compute the maximum of the array A, and set its value to max(f).

Lemma 3 The initialization of the data structure takes O(P(n) + nQ(n)) time.

Proof: First consider the partitioning of the set V. Clearly, this can be done in O(n) time.
We prove that the partition is correct. Suppose object p is in set V;. If p is still present after
2™ updates, then 7 = m. If p will be deleted in the first update, then ¢ = 0. Otherwise,
i = [logd] — 1, where p will be deleted in the d-th update. Since i < log d, we have d > 2°.
Hence p is still present after the first block at level z. It follows that the sets V; satisfy
condition 1 of our data structure.

It is not difficult to prove that each subset V; has size at most ¢ 2, where the constant ¢
is independent of 7.

Now consider the building of the structures DS(V;) and the lists V;. These lists can be
built in O(n) time. The building of the data structures takes an amount of time that is
bounded above by

Here we have used the facts that P(n) is smooth, and that P(n)/n is non-decreasing.

Let p € Vi. The time needed to compute f(p,V;) is bounded by Q(|V;]). This value is
computed for j = ,...,7n, and we also compute the maximum of these values. Finally, we
compute the maximum of all these maxima, where p ranges over V;. Altogether, this takes
an amount of time that is bounded above by |V;| 2272, Q(|V;]). Varying i from 0 to m, it
follows that the computation of all f-values, and their maxima, takes an amount of time
that 1s bounded above by

m

SIS o) < Q) S Wilim—i+1)

1=0 ) 1=0

The final computation of the maximum of the array A takes an extra amount of O(m)
O(logn) time. It follows that the total initialization time is bounded by O(n + P(n)
nQ(n) +logn) = O(P(n) +nQ(n)).

It 1s clear that the given algorithm builds a correct data structure. This proves the
lemma. [}

+

The update algorithm: Suppose we perform the k-th update, where 1 < & < 2™. Write
k in the binary number system, i.e., k = 281 +2%2 {4+ 2% where 0 < i) < iy < ... < i; < m.



Then after update k has been carried out, the current blocks at levels 0,1,...,7; are all
completed, and these are the only completed blocks.

If the k-th update is an insertion of object ¢, we insert ¢ in the list V, we compute the
values f;(q) := f(q,Vj), for j = i1 +1,...,m, and we store these values in a list. If the
update 1is a deletion, then the object to be deleted 1s stored in the list V. In this case, we
delete it from this list.

Now let W be the union of all lists V,...,V;,. Then we use the first part of the above
initialization algorithm to partition the set W into new subsets Vp,...,V;,, and we build new
lists—which we call again Vj,...,V; —and new structures DS(Vp),...,DS(V;,) for them.
(The set V;, consists of all objects in W that are still present after the next block at level iy
is completed.)

Next, we do the following for i = 0,...,;: For each object p in (the new) V;, we compute
the values of f;(p) := f(p,V;), for j =1, . These values replace the old values of f;(p),
j < 11, that are stored at the beginning ofp s list. The values of f;(p), i1 < 7 < m are not
changed, and they remain present in p’s list. Next, we compute the maximum of all values
fi(p), i < j < m. and we set its value to max(p). Then we compute the maximum of all
these values max(p), where p ranges over all objects in V;, and we store the result in the
array-entry A(z).

Finally, we compute the maximum of the array A(0 : m), and we set its value to max(f).
This value is the new maximurm of f over all pairs of objects that are present at this moment.

Lemma 4 The above update takes an amount of time that is bounded by
0(Q(n)logn + P(2") + 21 Q(2") + 2% logn),
where tice constant factor 1s independent of 1;.

Proof: Iu case of an insertion of object ¢, 1t takes

7n logn
Qi) < >° Q(n) = 0(Q(n)logn)
]’-’-'Tl"'! 7= =21+1

time to compute the values f;(¢) for j = ¢y + L,...,m. Since |W| < E;‘:OCZj = 0(2"), it
follows from Lemma 3, that it takes O(P(2") + 2% Q(2%+)) time to build the lists Vp,. .., V;,,

the structures DS(Vp),. .., DS(V;,), and the values f;(p) for j =1,...,7; and p € V;, where
1=0,...,3;. Furthermore, it takes

0 (i‘ Vil (m - 2)) =0 (i 2i(m - z)) =0 <2i‘ log n)
1=0 /

1=0

time to compute the maxima of the lists f;(p),..., fm(p), for all p € V;, and the maximum
of all these maxima over all p € V;, where : =0, ...,7;. Finally, the update of the maximum
of the array A(0 : m) takes O(m) = O(logn) time. This proves the time bound.

It remains to prove that the update algorithm is correct. Let 0 < ¢ < m. Then the
integer k = 2 + 2%2 4 ... 4 2% is divisible by 2° if and only if 0 < i < 7;. Hence, indeed
the current blocks at levels 0,1,...,7; are the only ones that are completed. Clearly, after
the update, the lists, the structures, and the various values of f, and their maxima, for the
levels 0,1,...,7; have the correct values. Also, the array segment A(0O : i) has the correct
value. Since at levels ¢y + 1,...,m no blocks are completed, nothing has to be changed for



the structures and the values of f corresponding to these levels. This proves the correctness
of the update algorithm. O

Proof of Theorem 1: First we bound the time needed to perform a sequence of 2™ updates
as described above. By Lemma 3, it takes O(P(n)+n Q(n)) time to build the data structure.

The complexity of the k-th update depends on the least significant bit in the binary
representation of k. (See Lemma 4.) Let k; be the number of times that during the updates
1,2,...,2™, the least significant bit of k is equal to i. It is easy to see that k; is equal to
the total number of blocks at level 7 + 1. Hence, k; = 2™ ! for 0 < i < m, and k,, = 1.
Therefore, k; < 2™~ < n/2* for 0 < i < m.

It follows from Lemima 4, that the total amount of time needed to perform 2™ updates
is bounded above by

Pn)+nQ(n)+ f: k; (Q(n) logn + P(2Y) + 2' Q(2') + 2'log n)

= 0 (P(n) +nQ(n)+ Zm: % (Q(n) logn + P(2') + 2" Q(n) + 2" log n))
i=0

= O (1’(n) +nQ(n)+ nQ(n)logn 4 P(n)logn + nQ(n)logn + n(log 71)2)
= 0 (P(n) logn + nQ(n)logn + n(log n)z) :

So, amortized, we spend an amount of time per update during this sequence, that is
bounded by

- ( P\wz)riogn - nQ(n)logn 0 n(log n)2> -0 (P(n)

2m 2m n

logn + Q(n) logn + (log n)2> )

where we have used that n/2 < 2*1,

Since 2™ < mn/2, the number of objects is always between n/2 and 3n/2. It follows—
because our complexity measures are assumed to be smooth—that the amortized amount
of time per update during this sequence of 2™ updates is bounded by O((P(N)/N)log N +
Q(N)log N + (log N)?), if N is the number of objects at the moment of the update.

After this sequence of 2™ updates, we choose a new value of m, depending on the number
of objects at that moment, we build a new data structure, and we proceed in the same way.
This proves the bound on the amortized update time.

We are left with the bound on the size of the data structure. The data structures DS(V;)
and the lists V; together have a size that is bounded by O(n) + Y%, S(|Vi]). Since S(n)/n is
non-decreasing, and since |V;| < ¢ 2! for some constant c, it follows that this sum is bounded
by O(S(n)).

If p is an object in set V;, then it contains the values f;(p),..., fm(p), and max(p). It
follows that the total size of these values for set V; is bounded by O(2!(m —i+2)). Therefore,
all these values for all objects of V together have size at most O(3> 7, 2!(m — i + 2)) =
O(2™) = O(n). The array A and the value max(f) have size O(m) = O(logn). Hence, the
entire data structure has size at most O(S(n) + n) = O(S(n)). Since the current number of
objects is ©(n), and since S(n) is smooth, we have proved that the size of the data structure
is bounded by O(S(N)), if N is the current number of objects. This proves Theorem 1. [



4 The worst-case algorithm

We turn the amortized bound of Theorem 1 into a worst-case bound. If in the algorithm of
the preceding section the value of ¢; is high, we spend a large amount of time in that update.
For such updates, we divide this large amount of time over a number of updates. In this
way, the worst-case update time turns out to be small.

Let f: T xT — R be a symmetric function, and let V' be a subset of T' of cardinality n,
for which we want to maintain the maximum of f. Let DS(V) be a data structure storing
V, that has size S(n), and that can be built in P(n) time, such that for p € T, the value
of f(p,V) can be computed in Q(n) time. Again, we assume that these three functions are
non-decreasing and smooth, and that S(n)/n and P(n)/n are non-decreasing.

The data structure: Let m be an integer, such that 2™ < n/2 < 2™*% We maintain
the maximum of f under a sequence of 2™ semi-online updates. Again, we number these
updates 1,2,...,2™.

1. At each morment, the set V is partitioned into subsets Vo, V3,...,V,,_1. For 3 <1 <

m — 1, the set V; consists of objects that are still present after the current block at

level 7 is completed. Furthermore, V, = V\U;'f;gl V;i. (Some of the V;’s may be empty.)

2. For each 3 < i < m — 1, there is a data structure DS; := DS(V;), and there are lists
V2 V3 ..., Vi, where V7 stores the set V;. So each level i contains the objects at its
own level, and all objects at the lower levels.

3. For i - 2, there is a list Vi? that contains the set V.

4. liach object p in V contains a pointer to a list containing the values f;(p) := f(p,V;),
for j =1,...,m — 1, in this order. Here 7 is such that p € V;. Also, with the list of p,
we store the maximum value max(p) of the f;(p)’s.

5. There is an array A(2 : m — 1) that contains the values A(z) := maxpevy,(max(p)).
Hence, A(7) is equal to f(V;,V; U ... U V,,_1). Finally, we store the maximum value
max(f) of this array. By Lemma 2, max(f) is the maximum of f over all pairs of
points in V.

Consider a sequence of 2™ updates. In what follows, we speak about the next block at
level 7+ 1. Later, we guarantee that the value of ¢ is such that this next block exists. (Note
that after 2™ updates, the value of n, and hence that of m, might be changed. Therefore, if
the value of m is decreased to m — 1, and if i« = m — 2, then during the last block at level z,
there is no next block at level 7 4 1.)

Let 3 < i < m — 2. We describe how a block at level i—having length 2'—is processed.
We split this block in 8 parts, each of length 272, (Note that 272 > 1.)

Part 1 of level i: This first part consists of updates 1,2, ...,2°"3. During these updates,
we make two lists Fii+1 and ]*’ii—l, where Fj“ are all objects in Vii that are still present after
the current and next blocks at level ¢ 4+ 1 are completed, and F;‘l = V\ FZ“.

Later, we prove that |V?'| = O(2!). Therefore, this partitioning takes O(2) time. With
cach update, we do an amount of 0(2%)/2:~% = O(1) work.

Comments: Since F!™' C Vi, we see that all objects in F; ! are still present after the
current and next blocks at level 7 — 1 are completed.



During Part 1 of the processing of the current block at level i — 1, we have computed
a list FLl of objects that are still present after the current and next blocks at level 7 are
completed. This list F?_; is available after update 2%, hence surely at the start of Part 2
of level 3. (If i = 3, we guarantee later, that the list F5 is available after the first update of
the current block at level 2, hence at the start of Part 2 of the current block at level 3.)

Part 2 of level i: The second part consists of the next 272 updates. During this part,
we copy the list F!_; into a list H;, we merge the lists F’Jrl and F! | in a list N, and we
build a structure DS( N}). We also make for each j = i+ 1,...,m ~ 1, a copy N! of the
list V.

Later, we prove that the size of the sets F;'' and F!_, are both bounded by O(27).
Therefore, it takes O(P(2)) time to build DS(Ni), and O(2Y(m — 7)) = O(2'logn) time to
make the lists H;, N}, NL, |, ... . With each update, we do an amount of O(2*logn +
P(21))/2"7% = O(logn + ]’(2'i)/2') work.

Comments: After Part 4 of level 4, the new structure DS(N}) takes over the role of the
structure DS;. Therefore, after Part 4, each object p that is at one of the levels 2,...,7 at
that moment, must have the value f(p,Nf) in its list. At the beginning of Part 3 of level i,
the lists V;2,... 1V} contain all objects at levels 2,...,7. After Part 4 of level i, these lists
have been changed, but together they contain more or less the same objects. (Of course,
objects have been deleted, and new objects have been inserted in the mean time. During
Parts 3 and 4 of level ¢, however, no objects from levels > 7 move to these lists.)

Part 3 of level i: The third part consists of the next 2¢=3 updates. During this part,
we compute for each object p in the lists V2, V3 ... |V, the value of f!(p) := f(p, N}), using
the structure DS (N?).

This takes altogether an amount of time that is bounded by

2

(1N) Llw s ( (21’)22]’) = 0(2' Q(2').

j::2

With cach update, we do O(2' Q(2%))/2' % = 0(Q(2')) work.

Note that during Part 3 of level i, several blocks at lower levels are completed. Hence,
during Part 3 of level 7, some of the lists Vj will change. If a list Vj is replaced by a new one,
we keep the old list—we call it OJ—and upon computing the values of f!(p) for objects at
level 7, we let p vary over the list OJ Afterwards, we discard all old lists OJ This increases
the time and space bounds by at most a constant factor.

Also, if the actual update is an insertion of object g, we compute the value of f!(g) :=
fg, N}).

Part 4 of level i: This part consists of the next 2:~3 updates. During this part, we give
each object p in the list N7, a new list f;(p) := f!(p), fi+1(P), fixz(®), -, fm-1(p). We also
compute the maximal value of this new list, which we call max(p). Finally, we compute the
maximum max; of the values max(p) over all p € N}.

This takes O(|N!|(m — 1)) = O(2!(m — i)) = O(2'logn) time. With each update, we do
an amount of O(2*logn)/2"=% = O(logn) work.

Again, if the actual update is an insertion of object ¢, we compute the value of f!(g) :=
f(q, N;).

After Part 4 of level i: After Part 4, we have processed 2”1 updates. Now we set
V; := N! (note that V; is a set of objects that we do not store implicitly; we only need it
for reference); we set Vj" = NJ’:, for j = 4,...,m — 1; we set DS; := DS(N!); and we set
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A(7) := max;. Hence, A(i) is equal to f(V;,V;U...U V,,_;). Finally, we replace F; ! by an
empty list F2~1. All of this can be done in O(m — i) = O(logn) time.

Comments: Let p be an object that is at a level < ¢, after Part 4 of level 7 is completed.
First suppose that p was inserted during Part 3 or 4 of level i. Then we have computed
the value of f!(p) = f(p, N!). Otherwise, p was present already at the start of Part 3 of
level i. Then, at the start of this Part 3, object p was already at a level < i. That is, at
that moment, p was in one of the lists V2 ... Vi It follows that with p, there is a value
fl(p) = f(p,N}). If pis at level j < i after Part 4 of level i is completed, then during the
processing of Part 8 of the current block at level j—which is completed at the same time as
Part 4 of the current block at level 7 is completed—we take care that the list of p gets the
value f!(p). (If j = 2, we take care that during the last update of the current block at level
2, the list of p gets f!(p).) Hence, each object p that is at one of the levels 2,...,14, after
Part 4 of level i is completed, contains the value of f(p, N?) in its list.

Next, note that the objects that are present after Part 4 of level ¢ is completed, are still
partitioned into subsets Va,...,V;,—1. In particular, these sets are still pairwise disjoint: At
level i, the objects in F’ii_l (here we mean the list FZ"I that was made during Part 1 of
level ) have disappeared. At this moment, these objects are, however, stored in the data
structure DS;_;. (This structure was built during Part 6 of level 7 — 1, and it took over the
role of the old DS;_; after Part 8 of level 2 — 1. The end of Part 8 of level 7« — 1 coincides
with the end of Part 4 of level 3. If i = 3, the list F is part of the current list V;2.) Also,
at the end of Part 4 of level i, the objects of the set F} ; are stored in DS;. These objects
were contained in the old structure DS;_; of level 7 — 1, which is replaced at the end of Part
8 of level 7 — 1 (hence at the end of Part 4 of level ) by a new structure DS;_; that does
not contain cbjects of F}_,.

It foliows that all structures and variables corresponding to this value of 7 are correct.

Part 5 of level i: This part consists of the next 272 updates. During these updates,
nothing happens at level 1.

Comments: Suppose that the current block at level 7 coincides with the first half of the
current block at level 7+ 1. Then during Part 1 of the current block at level ¢ + 1 (which is
completed after Part 2 of the current block at level 1) we have computed a list Fii+1 of objects
that are still present after the current and next blocks at level ¢ are completed. Otherwise,
the current block at level 7 coincides with the second half of the current block at level 7 + 1.
Then, after Part 4 of the current block at level i + 1 (which is completed at the start of
Part 1 of the current block at level 7) there is an empty list Ff+1.

Similarly, during Part 1 of the current block at level 2 — 1 (which coincides with the first
half of Part 5 of the current block at level i) we have computed a list ! , of objects that
are still present after the current and next blocks at level ¢ are completed. (If 7 = 3, we
guarantee later that the list F§ is available after the first update of the current block at
level 2, hence at the start of Part 6 of the current block at level i.)

Hence, at the start of Part 6 of the current block at level ¢, the lists Fii+1 and Fj_l are
available.

Part 6 of level i: During this part—which consists of the next 2:~% updates—we merge
the lists H;, F},, and F}_, in a list N}, and we build a structure DS(N}) for it. We also
make for each j =14+ 1,...,7m — 1, a copy N} of the list N}. Just as in Part 2, we do with
each update an amount of O(logn + P(2)/2%) work.

Comments: After Part 8 of level i, the new structure DS(N}?) takes over the role of the
structure DS;. Therefore, after Part 8, each object p that is at one of the levels 2,...,7 at
that moment, must have the value f(p, Nf) in 1ts list.
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Part 7 of level i: This part consists of the next 2:~% updates. During this part, we
compute for each object p in the lists N, ViZ,..., V™! the value of f!(p) := f(p, N}), using
the structure DS(N{). (During Part 7 of level 1, several blocks at lower levels are completed,
and, hence, during Part 7 of level 7, some of the lists V7 will change. If a list V is replaced
by a new one, we keep the old list—we call it OJ—~and upon computing the values of f! (p)
for objects at level j, we let p vary over the list OJ Afterwards, we discard all old lists OJ )
Just as in Part 3, we do with each update an amount of O(Q (2’)) work.

Also, if the actual update is an insertion of object ¢, we compute the value of f!(g) :=
f(a, N3).

Part 8 of level i: This part consists of the final 2872 updates of the current block at
level 7. After this block is completed, there are blocks at other levels that are also completed.
Suppose that after Part 8 of level ¢, all blocks at levels 2,3,...,7; are completed. (The value
of i; can be determined in the same way as in the update algorithm of Section 3.) Let
j = min(iy + 1,m — 1).

Let p € N!. During Part 3 of level j, object p was at one of the levels < j, or it was
inserted during that part. Therefore, there is a value fi(p) = f(p, N;), where N} becomes
the new set V; after Part 4 of level j (hence after Part 8 of level 7) is completed. Similarly,
during Part 7 of levels a = ¢,...,7 — 1, object p was at one of the levels < a. So there is
a value fl(p) = f(p,N¢), where N2 becomes the new set V, after Part 8 of level a (hence
after Part 8 of level 7) is completed.

During Part 8 of level ¢, we give each object p in N}, a new list f;(p) := f!(p), fir1(p) :=

1) s 5(8) = 11D, Fis1(), F42(P), s Sma(®). (G = m - 1, there are only
f- values in thls sequence, and no f-values.) We also compute the maximal value of this new
list, which v call max(p). Finally, we compute the maximum max; of the values max(p)
over all ¢ NI

This takes O(|N}|(m - 1)) = O(2!(m — 1)) — O(2'logn) time. With each update, we do
an amount of O(logn) work.

Again, if the current update is an insertion of object ¢, we compute the value of f(q) :=
flg, N}). _

After Part 8 of level i: After Part 8 is completed, we set V; := N!; we set the lists
Vj" = N;, for j =4,...,m - 1; we set DS; := DS(N}); and we set A(i) := max;. Hence,
A(7) is equal to f(V;,V;U...UV,,_1). All of this can be done in O(m — i) = O(logn) time.

Comments: Let p be an object that is at a level < 7, after Part 8 of level i is completed.
Then in the same way as in the comments after Part 4 of level 7, it follows that there is a
value f!(p) = f(p, N}) for object p. If p is at level a < 7 after Part 8 of level i is completed,
then during the processing of Part 8 of the current block at level a—which is completed at
the same time as Part 8 of the current block at level 7 is completed—we take care that the
list of p gets the value f!(p). (If a = 2, we take care that during the last update of the
current block at level 2, the list of p gets f!(p).) Hence, each object p that is at one of the

levels 2,...,1, after Part 8 of level 7 is completed, contains the value of f(p, N:) in 1ts list.
Again, the objects that are present after Part 8 of level 7, are still partitioned into subsets
Va,...,Vim—1. In particular, these sets are still pairwise disjoint: this can be proved in the

same way as in the comments after Part 4 of level z.
It follows that all structures and variables corresponding to this value of ¢ are correct.

This concludes the update algorithm for a block at a level 3 < 7 < m — 2. Next we
describe how a block at level 2 is processed.
Block at level 2: During the first update, we make two lists F3 and F}, where F}
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are all objects in V2 that are still present after the current and next blocks at level 3 are
completed, and FZ = V2 \ F3.

Afterwards, we perform the actual update: If the update is an insertion of object ¢,
we insert ¢ in the set V5 and in the lists F22,V22,V32,...,V,31_1; we compute the values of
fi(q) := f(q, V) using the list V2 if i = 2, and using the structures DS; if 3 < i < m — 1; we
store these values in a list; and we compute the maximum max(q) of this list. If the update is
a deletion of the object ¢, we delete ¢ from the set V3 and from the lists F2,V;Z, V... V2 |
(we know that g is in all these lists); and we discard all further information corresponding to q.
After this insertion or deletion, we compute for each p € Vi the value of fo(p) := f(p,V2)
using the list V2, and we replace the first element of p’s list by this new value fy(p); we
compute for each p € V? the maximal value max(p) in its list; we compute the maximum of
the values max(p), where p ranges over V.2, and we set A(2) to this maximum.

In the second and third update, we only perform the actual update as just described.

In the fourth—and final—update, we first insert or delete the object in the list F:Z. Next,
we set Vy 1= FZ U FZ; we merge the lists FZ and FZ in a list V,?; and we copy this list into
lists V&, ..., VE_,. (These lists ij replace the old ones. Note that the list FZ has been
computed during Part 1 of level 3, in case the current block at level 2 coincides with the
first half of the current block at level 3. Otherwise, FZ is empty. So these lists are indeed
available if the fourth update of the current block at level 2 is processed.) Let 7; be the
highest level at which the current block is completed, after the current block at level 2 is
completed. Let 7 = min(¢; + 1,m — 1). If the current update is an insertion of object ¢,
we compute fa(q) = f(g,V2), and f.(q) := f(q¢,Va) for a = 5+ 1,...,m — 1. Note that
for all objects p in V3 (also for p = ¢) the values of f!(p) = f(p,N2), a = 3,...,7, have
been computed during Part 3 of level j, and during Part 7 of levels 3,...,7 — 1. Now we
give each vbject p in V3 the list fo(p), fs(p) = f3(p), fa(p) :== fi(p), ---, fi(p) == fi(p),
fiv1(p), ., fm-1(p), and we compute the maximum max(p) of this list. Finally, we set A(2)
to the maximum of all values max(p), where p ranges over V;.

Comments: Since the size of V2 is bounded above by a constant, each update of a block

at level 2 takes an amount of time that is bounded by

0 (logn+"§: Q(lV,[)) =0 (logn—knfz_: Q(2i)> )

1=2 1=2

The first block at level m — 1: The first block at level m — 1 is processed similarly as
a block at level i. Again, this block is split in 8 parts, each of length 2™~ *. During Part 1
of level m — 1, we make two lists F7"! and Fr"? where F™"! are all objects in V7!
that are still present after the current and next blocks at level m — 1 are completed, and
F;"'__lz = me_“ll \ Fr'n"_'ll. We divide this work among the 2™~ * updates, each update spending
an amount of O(1) time.

During Part 2, we copy the list F::__zl into a list H,,_;, we merge the lists F:l‘:ll and
F7=3 inalist N771, and we build a structure DS(N~1). This takes an amount of O (2™ +
P(2™)) = O(P(2™)) time, that we divide among the 2™~ * updates of Part 2. With each
update, we do O(P(2™)/2™) work.

During Part 3, we compute for each object p in the lists V%_I,V,i_l,...,foll, the

value of f!,_,(p) := f(p,N_}), using the structure DS(N7-1). (If one of these lists V! |

changes—because a block at a lower level is completed—we keep the old list in a list O,jn_l,
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as before.) This takes an amount of time that is bounded by
m-—1 . m-1
QUNZTIN X IVaal=01Q(2™) X 2| =0@™ Q™).
i=1 i=2

With each update, we do O(Q(2™)) work. Also, if the actual update is the insertion of
object g, we compute the value of f!._,(q) := f(g, N_}).

During Part 4, we set fn—1(p) := max(p) := f!,_,(p) for each object p in the list N""{.
So p becomes a new list consisting of only one element f,,—1(p). Then, we compute the
maximum max,,—1 of the values max(p) over all p € N"~1. This takes O(2™) time. With
each update, we do an amount of O(1) work. Also, if the actual update is an insertion of
object ¢, we compute the value of f'_,(q) := f(q, N=71).

After Part 4 of level m — 1, we set Vy,,_; := N7"1; we set the list V"' := N1 we
set DS,y := DS(N""}); and we set A(m — 1) :== max,,—;. Hence, A(m — 1) is equal to
f(Vin-1,Vim—1). Finally, we initialize an empty list F"~Z. All of this can be done in O(1)
time.

During Part 5, nothing happens at level m — 1. During Part 6, we merge the lists H,,_1,
.F;":ll and F:n”_—zl in a list Nz_”ll, and we build a structure DS(N:::II) for it. Just as in
Part 2, we do with each update an amount of O(P(2™)/2™) work.

During Part 7, we compute for each object p in the lists N,,’,'::ll, VE ... ,V,;":lz, the value
of f1_1(p) == f(p, N"~}), using the structure DS(N™"1). (Again, if a list Vi_l is replaced
by a new one, we keep the old list in list 03;1—1-) Just as in Part 3, we do with each update
an amount of O(Q(2™)) work. Also, if the actual update is the insertion of object ¢, we
compute ‘v value of f1._,(q) := f(g, NI'~1).

Du. .ng Part 8, we set fr,-1(p) := max(p) := f!._;(p) for each object p in the list N7},
and we compute the maximum max,,_; of the values max(p) over all p € N”'~}. This takes
O(2™) time. With each update, we do an amount of O(1) work. Again, if the actual update
is the insertion of object ¢, we compute the value of f!._,(q) := f(qg, N™{).

After Part 8 of level m — 1, we set V,,_1 := Nz:ll; we set the list V,':__ll = N;::__ll; we
set DS,, | := DS(N™_}); and we set A(m — 1) := max,,_1. All of this can be done in O(1)
time.

We saw already that after the entire sequence of 2™ updates, the value of m—and hence
the number of levels—might have to be changed. In order to guarantee that the number of
levels is correct, we have to make new levels, or we have to decrease the number of levels.
Since this will take a considerable amount of time, we have to divide this work among a
number of updates. Therefore, after the first block at level m — 1 is completed, we already
choose a new value for m, based on the total number of objects that are present at that
moment.

Let ng be the total number of objects that are present after the first 2™~ ! updates have
been processed. Then we take m' := |log(ng/3)|. After the final 2~ updates have been
processed, there will be levels 2,3,...,m' — 1. We will prove in Lemma 5, that m -1 < m/ <
m + 1. Hence, the number of levels decreases by one, does not change, or increases by one.

We have to describe the processing of the blocks at levels 2,3,...,m — 1 during the final
2m~1 updates.

For 2 <4 < min(m — 2,m’' — 2), a block at level i is processed as described above. Note
that for these values of ¢, the notion of “next block at level 7 + 1”7 indeed has sense. Also,
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the list Ffﬂ that we need during Part 6 of level ¢, is available at the right moment. Only
for the last block at level i, there are some differences: During Part 6 of this last block at
level i, we make for each j =i+ 1,...,m' — 1, a copy N; of the list N}. (So we replace m
by m'.) During Part 8 of the last block at level i, we give each object p in N?, a new list
filp) == fi(p), - .-, fi(p) := £:(p), fix1(p),- .., fmr—1(p), where j = min(i; + 1, m' — 1). (For
the notation, see the description of the processing of Part 8 of a block at level . Note that if
m' # m and j = m' — 1, we guarantee later that the values of f] ,_;(p) are indeed available.)
After Part 8, we set V; := N}; V} := Nifor j =4,...,m' - 1; DS; := DS(N}); A(i) := max;.

If m' = m, we process the second block at level m — 1 in the same way as we processed
the first block at level m — 1.

If m' = m+1, we process the second block at level m — 1 in a similar way as we processed
a block at level 7, for 3 < ¢ < m—2. Now, level m — 1 “passes” objects to levels m — 2 and m,
and it “receives” objects from level m — 2. It does not, however, “receive” objects from level
m. The objects that are passed to level m are built in a data structure DS,,, and a list N7.
Also, for each object p, we add at the end of its list the value of f,.(p) := f(p, N7), and
the maximal value max(p) of this new list. Finally, we replace the array A(2:m — 1) by an
array A(2 : m). In this new array, the first m — 2 entries coincide with the old array, and
A(m) is the maximum of the values max(p) over all p € NJ7.

We are left with the case m' = m — 1. During second the block at level m — 1, we pass
objects down to level m — 2, and the other objects stay at level m — 1 (for only the first half
of this block at level m — 1). During the final 2™~ ! updates, there are two blocks at level
m — 2. The first of these blocks is processed as a block at level 7 (for 3 < ¢ < m — 2) as
described above. So during this first block, level m — 2 “receives” objects from level m — 1
that are still present after the current and next blocks at level m — 2 are completed. During
the last b' ck at level m — 2, this level receives objects from level m — 3, and it passes objects
to level m — 3. During this last block at level m — 2, we make out of the objects of level
m — 2, the objects of level m — 1 that are not passed down during the first half of the last
block at level m — 1, and the objects that are received from level m — 3, a new data structure
at level m — 2, and new lists and f-values. Finally, we replace the array A(2:m — 1) by an
array A(2:m — 2), the value of which is obvious.

Now we are ready to give the final update algorithm.

The update algorithm: With each update, we perform an update at the current blocks
at all levels, 2,3,...,m — 1, as described above. After this has been completed, we compute
the maximum max(f) of the array A(2 : m — 1). This maximum is equal to the maximum
of f over all pairs of objects that are present at this moment. After the first block at level
m — 1 is completed, we choose the value of m/, as described above.

Let n' be the number of objects, after 2™ updates have been processed. It is shown in
Lemma 6 that 2™ <n'/2 < om'+2 Hence, we are in the same situation as the one we
started with. Therefore, we can proceed performing updates in this way.

In the rest of this section, we prove some lemmas and the final theorem, in which the
worst-case update time bound is proved. The correctness of the update algorithm follows
from the comments that were given during the description of the update algorithm for the
various levels.

Lemma 5 The integers m and m', as defined above, satisfy m —1 < m' < m + 1.

Proof: Recall that at the start of the algorithm, there are n objects, and the integer
m satisfies 2™ < n/2 < 2™t After 2™~ updates, there are ng objects, and we set
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m' = |log(no/3)]. It follows that

o n_.{_zr.n_:_l_ < ?.:nfijzlil i gm-1 - gm+2

3~ 3 = 3 3
Hence, m' < log(no/3) < m - 2, which proves that m' < m + 1. Similarly, we have
0 n — 2m~l 2m+1 . 2m~1

,‘I/__ — 2771.— 1
3 3 - 3 ’

Y

This proves that log(ng/3) > m — 1. Since m' = |log(no/3)| is an integer, it follows that
m' >m- 1. 0O

Lemma 6 Let n' be the number of objects that are present after 2™ updates have been
processed. Then
Zm' < nl/2 < 2171'—}—2.

Proof: Since ng is the number of objects after 2! updates, and since 2™ < n/2, we have
ng>n—-2""1>n - n/4 = 3n/4.

It follows that
n' <ng+ 2™ <ng+n/d<ng + ng/3 = 4ny/3.

Hence,
71,’/2 S 2'”.()/3 — 21+10g(nu/3) S 22+[log(n0/3)] — 217;'*‘2.

Similarly w. have
Tll 2 ng — 2m—1 2 ng — n/4 Z ng — n0/3 = 277,0/3

Hence,
g™ = gllog(no/3)]  gloa(no/3) — /3 < p' /2.

This proves the lemma. (]

Next, we prove the upper bound on the sizes of the sets V.

Lemumna 7 Let 2 <1< m - 1, and let V; be the set of objects that are stored at level ©. Thas
set has size at most 18 - 2°.

Proof: The set V,,_; can contain all objects that are present. Since during a sequence of
2™ updates, the number of objects is at most n + 2™, and since n < 2™*3 it follows that,
at any moment, the size of V,,,_; is at most 2™73 4 2™ = 18 . 2m~1,

Now let 2 < ¢ < m — 2. Consider the current block at level i. Let V; be the set of objects
that are at level 7 at the start of this current block. Let p € V;. There are three possible
cases.

Case 1: At some moment, p has moved from level j to level 7 — 1, for some 7 > 3.

Suppose that j > ¢4+2. At the start of the current block at level ¢, object p is in V;. Since
objects only move one level up or down, it follows that—at some moment—p has moved from
level « + 1 to level . Therefore, we may assume that j <4+ 1.

So, at some moment, object p belongs to the set FjJ_l of objects that are not present
anymore after the—at that moment—current and next blocks at level j -+ 1 are completed.
That is, p is deleted during one of the 27t2 updates of the—at that moment—current and
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next blocks at level j + 1. Since 5 < 7+ 1, it follows that the moment that p is deleted, is in
one of the—at this moment—current and next blocks at level i + 2. Hence, p is deleted in
one of the next 2°*3 updates. This proves that there are at most 2:*3 objects p in V; that
satisfy Case 1.

Case 2: After the moment of its insertion, p has moved monotonically from level 2 to
level 1.

At the start of the current block at level 7, object p is at level . Hence, during the previous
block at level i—during Part 2 or 6 of that block—p was built in a structure DS(N}) (because
p was in the list F? ;). Therefore, either at the start of the previous block at level i — 1,
or at the start of the block at level : — 1 that precedes this previous block, object p was at
level 7 — 1. It follows that there are two possible blocks at level i — 1, such that at the start
of such a block, p was at level ¢ — 1. For each of these two blocks at level ¢ — 1, there are
two possible blocks at level 7 — 2, such that at the start of such a block, p was at level 7 — 2.
Hence, in total there are 2% possible blocks, such that at the start of one of these, p was at
level 7 — 2. Continuing in this way, it follows that there are 2'~% possible blocks at level 2,
such that at the start of one of these blocks, p was at level 2.

If p is at level 2 at the start of block b at level 2, and if p moves monotonically to higher
levels, then p was inserted during the block at level 2 that immediately precedes block b. So,
for this block b, there are at most 4 possible objects p, that satisfy Case 2.

Altogether, there are at most 4 - 2°=% = 2¢ objects p in V; that satisfy Case 2.

Case 3: Otherwise, p has never moved from level 7 to level j — 1, for any 7 > 3, and
after its insertion, p has not moved monotonically from level 2 to level <.

Then, at the start of the algorithm, p was contained already at one of the levels 2,3, ... 1.
The data st :ture can be built using the initialization algorithm of Section 3. (We have to
adapt th . algorithm slightly, because now there are only levels 2,3,...,m — 1, and there are
lists V).) If at the start of the algorithm, p was at level 7, for some 3 < 7 < m — 2, then
p will be deleted in update d, for some d such that j = [logd] — 1. There are 27 such d’s,
namely d =27 + 1,27 +2,...,27t!1. Hence, at the start of the algorithm, there are at most
27 objects at level j. Similarly, at the start of the algorithm, there are at most 8 objects at
level 2.

It follows that there are at most 8 -+ E;-:g 27 = 2¢*1 objects p that are at one of the levels
2,3,...,1, at the start of the algorithm. Hence, there are at most 2¢*! objects p in V; that
satisfy Case 3.

To summarize, we have shown that V; has size at most

21"1’3 + 21, + 2i+1 =11- 21:’

if V; is the set of objects that are at level ¢, at the start of the current block at level 7.

Now let 3 < ¢ < m — 2. If the first half of the current block at level i is completed, then
level ¢ gets a new set V; = F:H U F!_,. Here, Fl-i+1 consists of objects that were at level ¢ at
the start of the current block at level 4, and F? ; consists of objects that were at level i — 1
at the start of the—at that moment—current block at level 7 — 1. It follows from the above

that

. . . . 33
Vil = |FY Y 4 |FEy < 11-28 411270 = 5 2

3

We have shown that for 3 <7 < m — 2, the set V; has—at any moment—size at most

i 33 i
max(11-2,~§-~2)§18-2.
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We are left with the case i = 2. We saw that at the start of the current block at level 2,
the set Vy has size at most 11 - 2%, During the processing of the current block at level 2,
at most 4 objects are inserted in V3. Hence, at any moment, the size of V; is at most
11-2% + 4 < 18- 2% This proves the lemma. 0O

Now we are ready to prove the final result:

Theorem 2 There exists a data structure of size O(S(n)), such that the mazimum value of
the symmetric function f can be maintained under semi-online updates at the cost of

p
0] <~—(B) logn + Q(n)logn + (log n)2>
n

time per update tn the worst case.

Proof: Carefully inspecting the update algorithm, we see that at each level 3 < ¢ <m — 1,
we spend an amount of time per update that is bounded by

0 (logn + P(2Y)/2' + Q(.‘Z’)) .

At level 2, we spend an amount of time per update that is bounded by

0 (logn +’"Z_ Q(2i)) :

1=2

Finally, we spend O(logn) time to compute the maximum of the array A. It follows that
the entire update algorithm spends an amount of time per update that is bounded by

0 (log n -+ nz_ Q(2Y) + E (logn + P(2Y)/2' + Q(zi))) (2)

1=2

= 0 (Q(n) logn%—ni (logn + P(n)/n+ Q(n)))

1=3
= (Q(n) log n + (P(n)/n)logn + (log n)z) .

Just as in the proof of Theorem 1, it follows that, at any moment, the current number of
objects is ©(n). Therefore, cach update takes O((P(N)/N)log N + Q(N)log N + (log N)?)
time 1 the worst case, if N is the current number of objects. Using Lemma 7, we can prove
the bound on the size of the data structure in the same way as in Theorem 1. O

Remark: In the above estimates, we use the facts that Q(n) and P(n)/n are non-decreasing.
If P(n)/n'*¢ andjor Q(n)/n’ are non-decreasing for some ¢,§ > 0, these estimates are too
pessimistic. In this case, a smaller upper bound for Equation (2), and hence a smaller update
time bound in Theorem 2, can be derived:

FQ(2)

-

m— m

Q

2 < 20 9 o(g(m),

Q(2) =

1=2

]
N

-
Il
)

Similarly, we get
m—1
>~ P(29)/2" = O(P(n)/n).
=3

In Section 5, we will see an example, where this case occurs.
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5 Applications

Dobkin and Suri give several applications of their algorithm. In this section, we repeat two
of these.

Let V be a set of n points in the plane. Suppose we want to maintain the diameter of V,
i.e., the maximal distance between any two points in V. For planar points p and g, let f(p,q)
be the euclidean distance between these two points. Then the maximal value of f over all
pairs of points in V is equal to the diameter of V. In order to apply Theorem 2, we need
a data structure in which queries of the form “compute the value of f(p,V)” can be solved
efficiently. Such a query is equal to “compute the maximal distance between p and any point
in V” | i.e., we want the furthest neighbor of p in V.

So let DS be the data structure that stores the furthest-point Voronoi diagram of V.
Using point location techniques, this structure can be implemented using O(n) space, such
that furthest-neighbor queries can be solved in O(logn) time. Also, this structure can be
built in O(nlogn) time. (See e.g. Kirkpatrick [9], Edelsbrunner [6].) Applying Theorem 2,
leads to:

Theorem 3 There exists a data structure of size O(n), such that the diameter of a set of n
points in the plane can be maintained under semi-online updates at the cost of O((logn)?)
time per update in the worst case.

Next consider the same problem, but now in three dimensions. Dobkin and Suri show that
there exists a data structure for the furthest neighbor searching problem of size O(ns/2 log n),
that can be built in O(n®/2logn) time, and in which queries can be solved in O(y/nlogn)
time. In ‘lus case, the remark made after Theorem 2 applies, and we get:

Theorem 4 There exists a data structure of size ()(n3/2 logn), such that the diameter of a
set of n points in three-dimensional space can be maintained under semi-online updates at
the cost of O(y/nlogn) time per update in the worst case.

Rermark: Dobkin and Suri did not notice that in this case, the upper bounds of Theorems 1
and 2 are too pessimistic. They obtain an amortized update time of O(./n(logn)?) for
maintaining the diameter in three dimensions. In fact, for many more problems considered
in [5], the remark made after Theorem 2 applies. In all these cases, the amortized update
times given there can be decreased.

As another example, suppose we want to maintain the closest pair of a set V of n points
in the plane. For p and ¢ points in the plane, let f(p,q) be the euclidean distance between
these two points. Then the pair of points that minimizes the value of f over all pairs of
distinct points in V' 1s equal to the closest pair of V. We apply the previous results, where
all occurrences of “max” are replaced by “min”.

In this case, we need a data structure in which nearest neighbor queries—i.e., given a
point p, compute the nearest neighbor of p in V—can be solved. So let DS be the closest-
point Voronoi diagram of V. This structure can be implemented in O(n) space, such that

nearest neighbor queries can be solved in O(logn) time. Also, this structure can be built in
O(nlogn) time. (See [9,6].)

Theorem 5 There exists a data structure of size O(n), such that the closest pair of a set of
n points in the plane can be maintained under semi-online updates at the cost of O((logn)?)
time per update in the worst case.
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Proof: If we apply the algorithm of Section 4, we maintain the value of min, ,cv f(p,q)-
But this value is equal to zero because we are allowed to take p and ¢ equal. So we have to
adapt the algorithm in order to correctly maintain the closest pair. (It seems that this has
been overlooked by Dobkin and Suri.)

During the algorithm, we compute values f(p, N}), where p ranges over all points that
are in the lists V2, .. .,Vj, or that are in the lists Nf,Vf, e ,Vii_l. (See Parts 3 and 7 of
level i.) If p is in one of the lists Vl-j, where 2 < j < i — 2, then f(p, N}) is equal to the
nearest neighbor of p in N?, and this nearest neighbor is not equal to p. If p is in one of NE,
Vii'1 and Vf, the nearest neighbor of p in N} can be p itself. Therefore, in Parts 3 and 7, we
only compute f(p, Nf) for p in Vij, where j = 2,...7 — 2. The closest pairs between points
in V71UV (resp. Niu Vi~1) and N} are computed during Part 2 (resp. 6) of level i. Note
that this can be done in O(alog a) time, if a is the cardinality of V; " UV} (resp. NfUV;™1).
(See Preparata and Shamos [12].) Here, a = O(2}). So in Parts 2 and 6, we spend an extra
amount of O(2'logn) time. Since we spend already the same amount of time, the time
complexity increases by at most a constant factor. O

6 Decomposable searching problems

In a searching problem, we are given a set V of objects and a query object p, and we are asked
some question f(p,V)—the query—about p and V. For example, in the nearest neighbor
searching problem, V is a set of planar points. In a query, we get a planar point p, and we
are asked to find a point in V' that minimizes the distance to p. In this way, we can view a
searching problem as a function f : Ty X P(T2) — Ts.

Definition 3 (Bentley [2]) A searching problem f : Ty x P(T2) — Ts is called decom-
posable, of there 1s a function O : T3 x T3 — T3, such that for any partition V = AU B of
any subset of Ty, and for any query object p in T1, we have

f(p, V)= 0(f(p,A), f(p, B)),

where the function O can be computed in constant time.

For example, the nearest neighbor searching problem is decomposable, because the
nearest neighbor of p in the set V = A U B can be computed in constant time from the
nearest neighbors of p in A and B, using the function O = min.

The techniques of the preceding sections can also be applied to decomposable searching
problems. In fact, for this case, the algorithms become easier. Let f be a decomposable
searching problem, and let DS be a (static) data structure of size S(n), that can be built in
P(n) time, such that queries “compute f(p,V)” can be solved in Q(n) time. Then we make
the following data structure that is capable of handling semi-online updates:

Again, the set V is partitioned into O(logn) subsets V; of size O(2°), where V; contains
objects that are still present after the current block at level ¢ is completed. The set V; with
the smallest index 7 contains all other objects. Each set V; is stored in a data structure DS;
and in a list V.

So this structure is essentially the same one as that of Sections 3 and 4, except that now
we do not need the lists containing the function-values and the array A.

Theorem 6 For the decomposable searching problem f, there exists a data structure of size
O(S(n)), such that semi-online updates can be performed at the cost of O((P(n)/n)logn)
time in the worst case, and such that queries can be performed in O(Q(n)logn) time.
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Proof: In the above structure, we maintain a collection of data structures, the objects of
which partition the set V. A query is performed by querying each structure DS; separately,
and by combining the answers using the function (1. Since there are O(logn) such structu-
res, the query time is bounded by O(Q(n)logn). Semi-online updates are processed as in
Section 4. Of course, the algorithm is adapted to the above data structure. The bounds on
the size of the data structure and the update time follow from Theorem 2. Note that there
are no terms Q(n)logn and (logn)? in the update time, because these terms bound the time
needed to update the various function-values in Section 4. In the present section, there are
no function-values. O

Remark: Suppose that we process a sequence of semi-online updates in which no deletions
occur. Then, the amortized version of the above algorithm is the same one as Bentley’s
logarithmic method for decomposable searching problems. Also, the worst-case version of
the algorithm is similar to the worst-case version of Bentley’s algorithm. (See [2,3,11] for
Bentley’s method.)

As an application of this theorem, consider the planar nearest neighbor searching pro-
blem. We quoted already in Section 5, that there exists a static data structure for this
problem of size O(n), that can be built in O(nlogn) time, such that queries can be answered
in O(logn) time. Note that now the problem we had with the closest pair problem—namely
of computing the nearest neighbor of p in set V' if p € V'—does not occur, because we do
not have to maintain the function values. Applying Theorem 6, leads to the following:

Theorem 7 For the planar nearest neighbor searching problem, there exists a data structure
of size O(n) <uch that semi-online updates can be performed at the cost of O((logn)?) time
in the wo st case, and such that queries can be answered in O((logn)?) time.

For other examples of decomposable searching problems for which Theorem 6 gives effi-
cient data structures that can handle semi-online updates, see [3,5,11].

7 Decomposable set problems

In this section, we give a new application of the algorithms of the preceding sections.

In a set problem, we are given a set V' of objects, and we are asked some question about
this set. For example, the problems we considered in Section 5, are set problems. We can
consider a set problem as a mapping f : P(T1) — Ti. Overmars [10] studied set problems
the answers of which can be merged efficiently, provided these answers correspond to sets
that are separated. Here, we introduce set problems, such that their answers can always be
merged.

Definition 4 A set problem f : P(T1) — Ty is called C(n)-decomposable, if there s a
function 11 : Ty X Ty — T3, such that for any partition V. = AU B of any subset of Ty, we
have

(V) = o(£(4), £(B)),
where the function [0 can be computed in C(n) time, if n is the cardinality of V.
As an example, the problem of constructing the Voronoi diagram of a set of n planar

points, is O(n)-decomposable: Kirkpatrick [8] and Chazelle [4] have shown that two arbi-
trary Voronoi diagrams can be merged in linear time. As another example, the problem
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of cornputing the three-dimensional convex hull of n points, i1s O(n)-decomposable, as was
shown by Chazelle [4].

Also for decomposable set problems, the techniques of the preceding sections apply. Let
f be a C(n)-decomposable set problem, and let V' be a set of cardinality n, for which we want
to maintain the answer f(V'). Using divide-and-conquer, this answer f(V) can be computed

In time
logn

Pln) = 2_: 2:C(n/2Y).

The following data structure maintains the answer f(V) under semi-online updates:

As before, the set V is partitioned into O(logn) sets V; of size O(2¢), where V; contains
objects that are still present after the current block at level 7 is completed. The set V; with
the smallest index ¢ contains all other objects. Each set V; is stored in a list V: Also, for
each set V;, there is an answer f(V;) of this set to the set problem. Finally, there is the
complete answer f(V') to the set problem.

Again, this structure is essentially the same one as that of Sections 3 and 4.

Theorem 8 Let f be a C(n)-decomposable set problem, and let A(n) be the mazimal size of
any answer to this problem for a set of n objects. Then there exists a data structure of size
O(n + Ei‘f__gon A(2Y)), that maintains the answer f(V), at the cost of

logn
p .
o |- 0 logn+ »_ C(2%)
n
1=0

time per sema-online update in the worst case.

Proof: Semi-online updates are performed on the lists V' and the partial answers f(V;) as
in Section 6. Afterwards, we merge all answers f(V;) to obtain the final answer f(V).
The first part of this update algorithm takes O((P(n)/n)logn) time. The merging of the

answers takes Eic;gon C(2}) time. The bound on the size of the data structure follows easily.

We mentioned above that the Voronoi diagram problem in two dimensions is O(n)-
decomposable. For this problem, we have A(n) == O(n) and P(n) = O(nlogn). Applying
Theorem 8 gives:

Theorem 9 There exists a data structure of size O(n), that maintains the Voronoi diagram
of a set of n points in the plane, at the cost of O(n) time per semi-online update in the worst
case.

Aggarwal et al. [1] have shown that arbitrary deletions in a Voronoi diagram can be per-
formed in linear time. It follows from the definition of O(n)-decomposability, that insertions
in a Voronoi diagram also take linear time. Therefore, the result of the above theorem even
holds for arbitrary updates. So the result of Theorem 9 is not new. It follows, however, from
a general technique, and it gives an alternative data structure for this problem.

Another interesting example is the problem of constructing the convex hull of a set
of n points in three-dimensional space. We mentioned that this problem is also O(n)-
decomposable. Again, A(n) = O(n) and P(n) = O(nlogn). Applying Theorem 8 leads

LO:
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Theorem 10 There exists a data structure of size O(n), that maintains the convez hull of
a set of n points in three-dimensional space, at the cost of O(n) time per semi-online update
in the worst case.

At present, the best fully dynamic data structure that maintains the convex hull of n
points in three dimensions, has size O(nloglogn) and a worst-case update time of O(n).
(See Overmars [10,11].) So the result of Theorem 10 improves upon the space requirement,
if we restrict ourselves to semi-online updates.

8 Concluding remarks

We have given an alternative description of Dobkin and Suri’s algorithm to maintain the ma-
ximum of a symmetric bivariate function. The analysis of the performances of the algorithm
is more straightforward than originally given by them. We have also turned the amortized
update time bound into a worst-case time bound. There are many interesting examples of
symmetric functions, to which the algorithms can be applied. For example, the diameter
and the closest pair in a set of n planar points can be maintained under semi-online updates
at the cost of O((logn)?) time in the worst case. Simplified versions of the algorithms can
be used for dynamizing static data structures that solve decomposable searching problems.
The amortized simplified algorithm is an extension of Bentley’s logarithmic method: if we
apply the algorithm in case there are only insertions and no deletions, we get Bentley’s al-
gorithm. The worst-case algorithm applied in case there are no deletions is also similar to
the worst-case version of Bentley’s algorithm. As a new application, we have adapted the
algorithm, such that the answer to a decomposable set problem can be maintained efficiently
ander serui-online updates.

There remain some open problems. In the logarithmic method for decomposable se-
arching problems, an insertion is performed as follows: We merge structures that store
20,21 .. 2! objects, together with the object to be inserted, in a new structure represen-
ting 2'*! objects. The time needed for this operation is in general bounded by O(P(2'*1)),
where P(-) is the time needed to build the data structure. For some problems, however, this
merging can be done faster. Consider, for example, the case of Voronoi diagrams. It takes
O(nlogn) time to build a Voronoi diagram from scratch. It was shown by Kirkpatrick [8]
and Chazelle [4], that two Voronoi diagrams can be merged in time that is linear in the total
number of points. Therefore, Voronoi diagrams of size 2°,...,2% can be merged in O(2¢)
time. Hence, we may apply Bentley’s theorem with P(n) = n, instead of P(n) = nlogn.
It follows that there exists a data structure for the nearest neighbor searching problem in
which points can be inserted in O(logn) time, such that queries can be solved in O((logn)?%)
time. It is an open problem whether for semi-online updates the same complexity can be
achieved.

Of course, the basic open problem is whether the techniques for semi-online updates can
be extended to online updates.
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