Please use this identifier to cite or link to this item:
doi:10.22028/D291-26435 | Title: | A representation theorem of infinite dimensional algebras and applications to language theory |
| Author(s): | Hotz, Günter |
| Language: | English |
| Year of Publication: | 1983 |
| DDC notations: | 004 Computer science, internet |
| Publikation type: | Report |
| Abstract: | We assign to each c.f. grammar G an infinite dimensionale algebra A_{R}(G) over a semiring R. From a representation \varphi of A_{R}(G) in R<Z^{(*)}<, when Z^{(*)} is a certain polycyclic monoid, we derive easily the theorems of Shamir-Nivat-Salomaa, Chomsky-Schützenberger, Greibach about a hardest c.f. languages and Greibach N.F. LL(k) und LR(k) languages get an easy algebraic characterisation, which generalises to non deterministic LL and LR-languages, which are linear in time and space too. |
| Link to this record: | urn:nbn:de:bsz:291-scidok-51268 hdl:20.500.11880/26491 http://dx.doi.org/10.22028/D291-26435 |
| Series name: | Bericht / A / Fachbereich Angewandte Mathematik und Informatik, Universität des Saarlandes |
| Series volume: | 1983/14 |
| Date of registration: | 2-Apr-2013 |
| Faculty: | MI - Fakultät für Mathematik und Informatik |
| Department: | MI - Informatik |
| Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
| File | Description | Size | Format | |
|---|---|---|---|---|
| fb14_1983_14.pdf | 42,17 MB | Adobe PDF | View/Open |
Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.

