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Abstract: We assign to each c.f. grammar G an infinite
dimensionale algebrauQR(G) over a semiring R. From a repre-

* [ %
sentation ¢ of«ﬁ%(G) in R<Z( )>, when 2° )

is a certain
polycyclic monoid, we derive easily the theorcms of Shamir-
Nivat-Salomaa, Chomsky-Schiitzenberger, Greibach about a
hardest c.f. languages and Greibach N.F. LL(k) und LR(k)
languages get an easy algebraic characterisation, which
generalises to non deterministic LL and LR-languages, which

are linear in time and space too.
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Introduction: Let X be a set and X* be the free monoid gene-

rated by X. The empty word is 1€X* and |ul means the length
of u€X*. For monoids M and semirings R is R<M> the semiring

of the finite sums

p =/ a_-m where o €R.
meM

We write often o =<p,m>. Only for finite many elements méEM
it holds <p,m>+0. We always assume that R has a multiplicativ

unit, which we identify with T1€M.

Of special importance for our theory is the syntactique monoid
X(*) of the Dyck language D(X) over X. This monoid called
polycyclic monoid by Perrot [Pe] can be defined as follows too:
One takes an bijectiv ecquivalent set X' to X such that XNX' = @.
The bijection be x—>x. We take further a symbol O¢XUX' and form
(XUX'UO)*; then we take the quotient of this free monoid by the

relation system
x-x=1, x-y=0, 0-2=z-0=0 for x,V€X,z€XUX'U{0O}.
For X we write too x | and x =x.

We further make use of context free grammars G=(X,T,P,S) with
XNT=@, PchXZUXxT and S€X. From this it follows that we have no
e-productions and 14€L{(G), if L(G) is the language generated

by G. We assume further G to be free from superfluous variables.
This means, that for x€X there axists derivations f and g such

that
£ g
S——> uxv—-=> w and weT*.

The last assumption about G is, that S does not appear in the

right side of any production g€P.



It is usual to write P too as an equation system
X = Z:ax,u'u for x€X

and ax,u =1 if (x,u)€P and ax,u =0 in all other cases.
Schiitzenberger has shown, that this makes sense in the following
way: The equation system can be solved by a system of formal
power series. L(G) can be looked at as the support of the power
series belonging to S. The coefficient of the word w in the
series gives the multiplicity of w relativ to G, this means the

number of essentially different derivations of w from S.

We assign to the grammar an equation system in a dual way by
writing the quadratic terms on the left side and the corresponding
linear terms as sums on the right side. This means that we study
eqguation systems of the form

Xey = ;;% aily-z, t = Z:_ ai-z

. z z . .
with al v’ atE{O,1; and

’

o = 1 = (z,xy)€P,

Z
X,Y

N

1T &= (z,t) €EP.

Q

tr

These relations are similar to the multiplication rules of
finite dimensional algebras over a ring R. In general such an
equation system does not define an associativ algebra. But

with a simple trick we get an associativ algebra from this idea.
We assign to G a new alphabet X by setting
{(x,1) 1 (z,xy)€EP},

{(y,r) | (ZIXY)EP}I
X = X,UX_.
L r

T
oo



For (x,l) resp. (y,r) we write often shorter X, resp. y_.
Now we define the grammar a=(§,T,§,Sr)
with

P = {(x.,ylzr)l(x,yz)EP,x*S,iE{l,r}}

1

U {(Sr,xlzr)l(s,xz)€P}

u {(xit)IiE{l,r}, (x,t)EP}.

Obviously L(G)=L(G) holds.

We assign to G now the following eguation system

— Z .
x-y—ZuX,y 7z for x€Xl,y€Yr (3?(;)

and
1 if (z,xy)€P
ax,y =41 if z=Sr,x=Sl,y=br
O in all other cases.

We generalize ®R., because our proofs will not become harder
by this, to the following situation: Xl and Xr are any to
alphabets with X;NX _=@. We put §=X1UXr. Further there are

given two mappings

§':X xX_ —> R<X*>

1
and
n':T —> R<X*>
with
' {x,y)= Zil 0l .z for (x,y)€XlxX ,
2€EX 21 Y &
_ Z
n'(t) = 2:; ay -z for t€T.
zeX

We extend &' on X* by defining

u for uveEX*.X*
r 71

— ] — N
§{u) =46"'(%x,y) for u—xyEXl Xr

5 : * , XX .
u1o(xy)u2 for u1EXr Xl and xyeXl Xr.



Now we extended § linear onto R<X*>. 1 is the corresponding
extension of n' onto R<T*>,

The equation system
xy = §(xy) for xy€X, - X (2?)

is the generalisation of the system (ﬂ%).

We assign now an assoziativ algebra~ﬁ%(6) to (®) . For this reason
we iterate § and finitely form the transitiv closure 6* of §. This

means it holds ded*=48%*,
Now one easily proofs
LEMMA 1: &*(uv) = §*(8*(u)-8*(v)).

Proof: The proof is given by induction on the length [uv]| of
uv. For |uvl< 2 there is nothing to proof. The lemma obviously
holds for quX;-Xi too. Let be uvix;-x*, this means that there

exists a decomposition
] ¢ e Xk o X% e
uv W XYW, such that w1€Xr Xl and xyEXl Xr'
We have then

— z -
6 (uv) w1(Zuxy z)w2.
Each of the words of that decomposition has length < n such that

we are allowed to apply the induction hypothesis.
We discuss two cases:

Case 1: xy is totally part of u or part of v.
We assume the first situation: u=u, Xyu, .
Then we have

g(uv) = u1.(z;aiy-z>'u2'v.



By induction we conclude

Z
X,y

6*(u1(2a§’y-z)u2v) 6*(6*(u1(2a -z)uz)-é*(v))

§* (8% (u) - 8*(v)).
Therefore our lemma holds in this case.

- = S * , Wk
Case 2: u u,x, Vv YV, and u xEXr X ,xEXl,y€Xr.

1 1 1

Then we have

. Z
§(uv) = u1(§ ax,y° 1

“ zZ)v.,).

= (u X,y' 1

z
1(2 ax y-z)v1+u1((2 o

- ¥
Xr Xl

We apply to this expression the induction hypothesis as it is

indicated by the brackets:

§* (uv) = §*(8*(u,x a; y-z)=6*(v1))

1E Oy,
Xy

+ Ok (8% (u,) 8% ((X ai g2 V)

X ! L
r

= 8% (8% (u,) (T af{,y-z)-a*mn
Xy

+ 6*(6*(u])(§ ai,
r

y-z)»ﬁ*(v1))

= 6*(6*(u1)-xy06*(v1)
= 6*(6*(u1x)-6*(yv1)).

The last relation holds because of

6*(u1x) = u,x and 6*(yv1) = yé*(v1).

1

This proofs case 2 and our lemma 1 has been proofed.



Now we define the operation 'o' on R<X*> by setting

uev := &*(uv).
It follows from this

(Uev)ew=3* (6* (uv) -w)=8* (&* (uv) §* (w) ) =8* (uvw) ,

ue (vew)=8% (u-&* (vw) ) =8* (&* (u) 6* (vw) ) =6* (uvw) .
Therefore the following theorem holds.

Theorem 1: R_(8) := (R<X*>,+,e)

R

is an assoziative algebra and
§*: (R<X*>,+,:) —> (R<X*>,+,0)

is an algebra homomorphism.

For the algebra we so assigned to our grammar G we write.ﬁ%(G).
We extend this algebra to include the terminals too. For this
reason we use the defined mapping n and extend n onto

(XUT) * by setting n(x)=x for x€X.

Now for u,veE (XUT)* we define
vev=8*(n(uv)) .

The assoziativ algebra we get by this construction we callJiR(G).

For u,eu,f...%u_ we write again u u,...u_.
2 n 172 n

1
In a case that it is not clear which product we mean
we write

Vilsy e [A%(G)]
if the product is in.ﬂR(G). Analogously we proceed with other
algebras.

The following concerns the questions
How are the algebras~QR(G) structured?
Which information containshﬂR(G) about L(G)?

How is the structure of.QR(G), if G is determistic?

The follwing section is dedicated to the first question.



A representation theorem for oQR(d)

We are going to show, that for each algebraVQ (6) there exist
a non trivial representation ¢: v‘% §) — R<X(*)> We will show
that the algebra R<X(*)> for our algebras and for the finite

dimensional algebras plays a similar role as tz):e)a matrix rina in the

finite dimensional case. It is clear that R<X > is a special

exemplar of our algebras uQ . The following lemma showes that
(*)

> has a very simple algebraic structure.

*
LEMMA 2: "QD = rR<x")> contains only trivial two sided ideals.

Ideals ¢t of JQ here are considered to be trivial, if there
exists an 1dea10z, of R such thatfi= &' <X( )

Proof of LEMMA 2: Let ¢ c.% be an two sided ideal, that means
that ﬂDUL.ﬂD c &t holds. We study several cases.

—_— %
1) Let be 0€R and a-uv with u,veEX in & Then it follows €.

2) p = aluv + gek=> p' = o + gq'€L gq' = uqv.
3) p = a + puv + gEQ.
a) uv = 0 = upv = B + (.

upv has one summand fewer then p.

b) uv # 0. We may assume uv = u'ex*, u' 1.
We have _
upv = au' + B + ugv.
chose ye€X, v # last letter of u'.

upvy = By + ugvy, this means one summand fewer.

4) From 1),2) and 3) it follows:
<p,u> =Q p&dl= .
x
Let be 4¥'= AZNR, then therefore it holds &=&' <X( )>, what we

have claimed.

We show now, that each finite dimensional algebra J over R has

a non trivial representation in UCZD.



Let be 2 a finite basis of A4 over R and /A being given by the

relations

§ Z z
Xey = uX e Z, ux,y ER.

z
ZEZ Y
We define
¢ A —> ﬂD by defining

ely) == Z z-ao .u for ye€Z.

z,U€Z 2:1¥

(*)).

This defines ¢ uniquely. (z is the inverse of z in Z

Theorem 2: ¢ is an algebra homomorphism. If 4 contains a multi-

plicativ unit, then ¢ is injectiv.

Proof: It is sufficient to show, that the relation
@(y1)-w(y2) = w(y1y2) holds for y1,y2€Z.

We calculate straight forward and get

- u u
w(y1)~w(y2) = ) 51 az1 - u, _2 azz -,
Z14Uq,25,4, 1Y 2'Y2
= E z OtU1 u2 u
ey, Vozgeyy ugey, 2
— 51 )
. z:_ z‘] O‘z u >'u2
z,/u, a, 1Y 11Y2

Now we apply (z1y1)y2 = 21(y1»y2) and R being element wise

commutable with 72 we get further

u u u
- 1 2 ) 1
z E o e} -u, = E o ®(u,)
E:;_- 1(u1 y1,y2 z1,u1 2 y1,y2 1

z40U, u,

= SD(Y1‘Y2) .

This proofs are the first part of our theorem.



Let be

u = Z By-y and ¢(u) = 0.
vE€Z

then it follows

®(u) = E Z.X Z:L By a?ly"x = @,

X,2€2 vEZ

and therefore we have
E a® B =0 for x,z€%7. (*)
yEZ Z:Y y

Let be now veEX,

We form

Vel = E Yy1'8y2 Y1YZ = Z__ YY (Z- 0(.;1 Iy2 Byz). *

¥1¥3 ypox 1 by,
Because of (*) it holds also

veu = 0 for all VEVQ.

1 and have u = O

I

We chose v

This proves the second part of our theorem.

Without proof we give for the case of matrix rings another

representation.

Theorem 3: Let.4 be a finite dimensional ring of quadratic

matrices (az,y)z,yez’ then
wla) = E za .y
z,Y€%2 2y

is a monomorphism fronlJ?intouQD.

Now we come to the main result of this section. To construct

the representation ¢ :uQR(6) —>nﬂb we first define a suitable



alphabet for ‘QD'
For u€X and x€X_ (remember X = X;UX), we define
O if for all wé€X* it holds <&* (uw),x> =0,

1 for u=x
free variable in all other cases.

[u:x]

Clearly it follows from [u:x]l# O and uEXr that u=x.

We set

7 = {[u:x] I [u:x] + 1,0; u€Xx, xexr}

*
and JQD = R<Z( )>.

For z€X we define

@' (z) = E a; . [v:xTlu:x]lz:v]
VeV, u,Xx !
[y:x]€z

Theorem 4: There exists an uniquely defined extension of ¢®' to an

algebra homomorphism ¢ : J?R(cS) -e».QD

Proof: X generates«ﬁ%(d) and therefore there exists not more as
one homomorphic extension of ©' onto.RR(G). To show that such an
extension exists, it is sufficient to show, that for the linear

extension ¢ of @' it holds

w(z1) . w(zz) = m(z122) holds for Z1EX1’ zzEXr.
By straight forward calculation one gets
©0(z,) - olz,) =
u, u,
; o [y1:x1][u1:x1][z1:v1]a [y2:x2][u2:x2][22:v2]
Y1IV-’ y2,V2

Y1lv1lu1lx1l

y2,V2,u2,X2r



B S uu1 uuz [y :x, Jlu,:x. I[u,:v,1[u,:v,]
T T T Ypi¥qilugsXylluy:vydidy:vyl.
RS R L

Yoully

For 22 ¥ v2 we have [zz:vz] = 0 becauce 22€Xr. Therefore there
1 =1.

remain only the cases Z, = Vo that means [22:v2

We use the commutativity of R and have

u, uy o
@w(z,) - w(z,) = z: & 2 E:ay 7 {y1:x?][u1:x1][u2:v1]
u, 1772 1771

u

=Zoczfzz 0(u,) = 0lz,2,).

Historical remark: Nivat uses in his thesis a homomorphism

which formally looks like our homomorphism ¢. But y is a mapping

P : R<X*> —> R<H(B)>,

where H(B) is the free half group generated by B. The main
difference comes from the different domains of ¢ and Y. Nivat

uses Y to proof the representation theorem of Shamir. But he needs
for this proof the normal form theorem of Greibach, which follows
as the theorem of Shamir from the existence of ¢. The reason is,
that.Q%(G) contains a lot of information over G, but R<X*> not

at all. More detailed informations over this subject the reader

may find in the book [Sa] of Saloma.

As we will show later one can derive fron ¢ a representation of
L(G) by a grammar in Greibach normal form. The size of the grammar

corresponds to the size of ¢. We define

A (81 = ) los |
'Y
X,¥,2 X
with
gl = 1€ IN for a0

O € IN else



For p€ A we put

lpl = E l<p,w>].
EZ(

w

We define as size (9! of ¢

ol =2 _ lo(2) 1.

z€X

One easily proofs

LEMMA 3: lol<IA |- %1%,

where |XI| is the number of elements of X.

.Invariants of the Transformation G — G.

We return to grammars and study which properties of G remain un-

~

changed when passing from G to G as we did in section 1.

The set of derivations of words into other words using G we call ?.
If f€ § then Q(f) is the word on which the derivation starts and

7 (f) is the result of the derivation f. If f,g€% and Q(f) = Z(qg),
then feg is the derivation, which one gets by first applying g

and then applying f. Obviously Q(feg) = Q(g) and Z(feg) = Z(f)

and "o" is assoziativ. The empty derivation belonging to the word w

is 1w' We have 1Z(f)°f°1Q(f) = f. In the case Q(f) = w, Z2(f) = v
we write too £
wW —> V.
If we have
f £
W, ——; v and \ —~§ v
i 1 2 2

we may form the derivation

flez
WaeW, ——> V.V,

This leads to an further assoziativ operation on #. The unit

(] |l

is 1..

X 1

belonging to



Both operations are connected by the property
(f1ag1)x (fzogz) = (f1xf2)o(g1xg2)

if the left side is defined. (&, (XUT)*, Q,%Z,0,x) forms a free
monoidal category, which in [Ho.0] has been called free

x-category and syntactical category in [Be].

The elements of # are trees or words over the derivation trees

in the case of context free grammars. The trees of the production
set P generate #. & is the category belonging to G. The structure
preserving mappings are called x-functors. An x-functor consists
of two mappings (w1,w2), the first one is a monoid homomorphism
from the monoid of the source category into the monoid of the aim
category. ¥, maps the derivation set into the derivation set.

We use further the apprevations

Morg(w,v) = {fe& 1Q(f) =w, Z(f) = v},

multG(w) = card Mor;(s,w).

The multiplicity of w over G tells us in how many essentially

different ways w may be derived from S using G.
LEMMA 4: For we€T* it holds
multG(w) = mult=(w)

G

Proof: To proof this lemma we construct the x-functor ¢ = (@1,w2)

from # onto # which forgets the indices r,1 in G. Thus we define
w1(x,i) = x for x€X and i€{l,r}
and for f€P

@, (£) = £1 = 0Q(£)) = Q(£"), ¢, (2(£)) = 2(£").

This cefines uniquely an x-functor from F into ¥.



Obviously wz(ﬁ) = P.

We show now for xf{i, that the restriction
XUT) R *
WZlMOEF'(Xi'(XUl) ) > MOEF (x, (XUT)*)

is bijective.From this fact our lemma follows then immediatly.

The proof is by induction on the number |f] of knots of the trees
of f.

Our claim is true for all f such that Q(f) = x, and |f] = 1.

i
Inductively we assume, that it holds for

wzl{féMOﬁ?(xi,(XUT)*)‘lf!in} —

{fGMoEr(x,(XUT)*)lIflfn}.

It is clear that

£l = lo,(£)| for fef,
Let be | f| = n+1 and Q(f) = X, .
We decompose

£ = (1, xhx1 )og

such that h€P and [ul being minimal with this condition. This
determines h uniquely.
From

(1uxhx1v)og = (1UXhX1V)og

it follows g = g', that means that g is uniquely determined by

this condition. [Ho.65]



Because of

wz(f) = (1 x mz(h) x 1w1(v))°w2(g)

w1(u)

and |@1(u)l = jul we see, that mz(f) has exactly one co-image.

This proofs our lemma.

Now we are going to show that the LL(k) and LR(k) properties
of G do not change, when passing from G to G. [Kn],[H.S.].

For this reason we introduce the following notions.

f € # we call u-left-prim for u€(XUT)*,

iff from

f = (TUXh)og it follows g = f.

The definition u-right-prim is symmetric to the former definition.

One easily shows the

LEMMA 5: For each f€#F, u prefic of Z(f), there exists exactly

one decomposition f = (1uxh)og such that g is u-left-prim.

Relating to the notion in this lemma, we call g the u-left-prim factor
of £f and h the v-right-base of f if Z(f) = u-v. We write

g = left-prim (u,f), h = right-base (v,f).

This figure should explain the

definitions. We use the notions too,

which we get from this definition
by changing 'left' into 'right' and
right into 'left'.

We give now the definition of LR(k) which is equivalent to the

definition [Har.P.502] and for LL(k) equivalent to the one given



- 16 -

by Hennie and Stearns [H.S.]. The reader should remember, that

we assume G to be in Chomsky NF and G without e-productions.

G is a LR(k) grammar resp. LL(k+1) grammar for X = O0,1,...,
if the following holds:

For all f,f'€ #with Z(f) = u-v and 2(f') = u-v'

we have
left-base(u,f) = left-base(u,f')
for Q(f) = Q(f') = S and Firstk(v) = Firstk(v')
resp.:
left-prim(u,f) = left-prim(u,f') for Q(f) = Q(f')€EX
and Firstk(v) = Firstk(v').

Remember that we assume that S never appears on the right hand
side of any production. From this it follows [Har.P.525], that
our LR(0o) grammars produce only ALR(o)-languages i.e. strict

determin. languages.

LEMMA 6: If G is a LL(k) resp.LR(k) grammar then G is a LL (k)

resp. LR(k) grammar.

Proof: To proof this lemma we use the x-functor defined in the
proof of lemma 4. Let be f:x. —> uv any derivation tree of ?:
and xi€§. We define

h = left-base(u,f) and g = left-prime(u,f).

Then we have

5
I

left—base(w1(u),w2(f))

ana

i
S
N
a
I

left—prime(w1(u),w2(f)).
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Now X and g' determine g uniquely as has been shown in

lemma 4.

Now let be G a LL(k) grammar. Then g' is uniquely determined

by w1(Xi) and mT(u)~Firstkw](v) and therefore X5 andﬂu-Flrstk(v)
determine g' uniquely and so g too. This means that G is a

LL (k) grammar.

Now we study the case, that G is a LR(k) grammar. By the same
argumentation as before we see that h is uniquely determined
by h' and Q(h). Using the LR(k) property we see that Q(f) = Sr
and ucFirstkv determined h' uniquely. If we are able to show
g then it follows
that G has the LR(k) property too. For this reason it is
sufficient to show, that Q(h)EXi holds.

Therefore let be

that Q(h) is uniquely determined by u-First

f = (hx]v)"g,

where by definition of h as left-base of f the factor g is

v-right-prime. Suppose Q(h)€X¥, then there exists a decomposition

Q(h) q1xlxrq2

and we have
Z(g) = %%, 95V-

This contradicts the assumtion g to be v-right-prime.

Therefore we have Q(h)éEX¥*¥, what we wished to show.

The last result in our proof we will use in a later part of

this paper again. Therefore we formulate it as

LEMMA 7: If f is v-right-prime then it holds uexi for

Z(f) = u.v. If h is u-left-base of f, then is Q(h)exi.

The lemma remains true if we exchange the words left and right.
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Connections between L(G),uQR(G) and

In this section we work out the general relations between
L(G) and\ﬂR(G) and our representation ¢. A first information

gives the

Theorem 5: WEL(G) <« <n(w),Sr>#0 for X(R)=0 (x(R)=characteristic ofR),
multG(w) = <n(w),Sr> L@N(G)].

(remember: '[]' contains the algebra in which the relation is

to be understood).

Proof: As we have shown in lemma 4 we may use G instead of G.
The proof is by induction on the length 1wl of w. For the proof

we show a little more general result:

multa(xi,w) <n(w),x;> for weT*, xief,

where

It

multa(xi,w) cardMor—(xi,w).

F

The Theorem is obvious for |wl = 1.
Let be f:xi —> w a derivation and [wl[>1. Then we may

decompose
f = pO(f]sz), p€§.

Therefore we have

mult= (xi,w) = ,S multg(yl,w1)-multa(zr,wz).

G =
Wt Wy=W

w1#1,w2#1

<ylzr,xi>=1

By the induction hypothesis is

multa (xi,w) = E <n(w1);yl>-<n(w2),zr>-<ylzr,xi>

W,] 'W2=W
w1#1,w2#1
<n(W),xi>.

what has to be proved.
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In the following we use the definition
(u) = u +Lﬂk(G).
(u) is the additive residual-class of u.

Corollary to THEOREM 5: For R =B = boolean-ring with two elements

we have

L(6) = n~'(s)).

We now study how the representation ¢ transforms the residual-

class (Sr).

. EYE 2]
LEMMA 8: For zoz]...zn€x it holds for zO#s

<ZZq.e.2 45> <w(z]...zn), [zO:s]>.

Proof: The proof is by induction on n.

case n = 1. Then we have
S
<z Z.,,s8> = QO .
o071 Z _,2
o’ 1

Because of

w(zi) = Z:a;,v [y:x][u:x][zjzv]

it follows

P —

g u
<o(z,), Lz :sl> = 2 o

Y.V
[y:x][u:x][z1:v]=[zo:s]

From this it follows that the sum is only to be taken over

the cases

yzzolx‘:slu:X,Z.]:V
Therefore
_ s
<m(z1), [zo.s]> = azO’z1,

what has to be shown.
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Inductionstep: It holds

P

[y:x][u:x][z1:v]w(22...z ).

w(z1...z ) = n

u
n — uy v
4
u,y,v,x

From this one derives

= =-1_ _ u -
<@(zy...z ), [z s 1 "> = 5 SR <Lu:sO]Lz1:v]®(zz...z ), 1>

u,v o’ n
— u &= e 1 1
=) o E <@(z,...2.),lz :v] '>e<@(z., ....2_),[u: -
Ty zo,v 5=2 2 | 1 ol j+1 n) [u So]

s
. o =1
+§V azo,v <w(22...zn),[z1.v] >

u g e ]
+§;;azo,z1<w(zz...zn),[u.sO] >,

By the induction hypothesis we get from this

n
u (%)
= E az v Z- <z1...zj,v><uzj+1...zn,so>,
u, o) j=1
z = t "
where 24 1 has to be taken

In the other hand it holds

u
= e eZ US<UZ . aeesZy 1Y >
<Zge -2y ¥ =%z v "1 3’ Jj+1 k’4fo
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Therefore our claim holds for k = 1.

We assume the claim being correct for k < n and apply this

onto (i). We get

n-1 s k
o u
<Z ...2_,8 _>= E o E o <Z.eeeZ.,V><UZ., ..
o n'"o =1 YorYq V=1 z 1V 1 J+1
Yor¥y u,v
<2y 9 'Y q>-
E °o
+ o(y Ly <z ,yo><zj...z 'Y
YorYq “0°71
n-1 u n-1 So
= o <z z.,v> o] <uz.
j=1 ZO,V 1 J k=] YOIY1 J+1
u,v yo,y1
<2341
S
+Zazo <z, z v>
v o’'¥1
= E e <z Z.,V><UZ. .. s >
_ 7z ,V 1-.¢ j’ J+1 LY ¥ o .

Therefore our claim is too

gether with (*) our lemma.

LEMMA 9 : Using the notation

<z L2 ,S > =
n' r

7

true for k =

of Lemma 8 it holds

<w(z1...zn), [Sl:Sr]>.

n. This proofs to-
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Proof: From Lemma 8 it follows

<Slz1"'zn’sr> = <w(z1...zn),[slzsr]>.

By definition of.&%(G) we get
<Slz1"'zn’sr> = <z1...zn,Sr>
and from this directly our lemma.

If we now concatenate the homomorphisms n and ¢ in this sequence
we get a homomorphism h = ¢ o n from T* into R<X(*)>. This

leads us to a representation theorem for c.f. lancuaces, which is
nearly the theorem of Shamir ([Sh] see too [Nj]). Shamir uses

(*)

instead of X the half group H(X), that means he does not make

use of the relations x-y = O for x # y.

THEOREM 6 (Shamir): To each c.f. language I=T* there exists a
— *

( )> and an additiv residual class
($) such that L = h_1(($)) holds.

monoidhomomorphism h:T ——>R<Z

Proof: The proof follows from lemma S and theorem 5 by choosing
$ = [Sl:Sr].

sk
Each polycyclic monoid Z( )

(*)

can be embedded by a monomorphism

into {X1'X2} . This embedding even can be done such that

[Sl:S ] in all cases will be mapped onto the same element
*)

We extend this embedding to a ring homomorphism

aOE{x1,x%}(
* *
) 2}( )>  and put it behind h. The

form R<Z > into R<{x1,x

resulting homomorphism let be h. Then the following holds.

Corollary to THEOREM 6: For each c.f. language LET* there exists

a homomorphism

- *
h:T— R<{x1,x2}( )s

such that L = 5'1((a0))

holds.
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In this form this theorem was first given in [Ho.1], where

it was derived from the theorem of Chomsky-Schiitzenberger

as an algebraic version of the theorem of Greibach about

a hardest language under homomorphic reduction [Gr.]. This
language one gets from the representation given above by

forming the c¢.f. language of the expressions consisting of
products of polynomials of R<{x1,x2}*>. The theorem of Grei-
bach and the representation above have been found independently
from the theorem of Shamir. A long time one has not payed
attention to the theorem of Shamir outside of the French School,
because its complexity theoretic aspects had not been seen.

As in [Ho.4] has been shown one can similar representations
construct for r.e., c.s., d.c.s. and other classes of languages.
It seems to be possible to construct for each complexity class
given by a time bound T (n) a language which is hardest in the

catecorie of homomorphic reductions.

We show that it is as easy as in the case of the theorem of Shamir
to proof the theorem of Chomsky-Schiitzenberger from our theorem 5 and
lemma 9. For this reason we change a little bit the defini-

tion of h, but such that lemma 9 remains applicable.

We define a homomorphism g : T* —> R<(ZUT)*>by setting for
teT

g(t) = EE: ai}lﬁl [y:x]ttlu:x][z:v].
zZ€X Y.V

We notice that the difference of g and h consists in two things:
The codomain is different and between [y:x] and [u:x][z:v]
there the product tt has been inserted.

Let be g the prolongation of g to a homomorphism from T* into
— (% -
R<(ZUT)( )>, by applying the canonical mapping from R<(ZUT)*>

—_— e %*
into R<(ZUT)( )> behind g.



Obviously then it holds

Corollary to LEMMA 9.

<g(w), Sy:S_.I> = <h(w),|Sl:Sr|>.

We define now a regular set over ZUT.
REG = [Sl:Sr]-{VIB(w€T)<g(w),v> + O}*.

Let be D(ZUT) the Dyck-language over ZUT and o : (ZUT)¥ — T*

the monoidhomomorphism with

o(z) = ¢ for z€z,
o(t) = ¢ for te€T,
o(t) = t for teT,

then it holds because of lemma 9 the

THEOREM 7 (Chomsky-Schiitzenberger):

L(G) = o(REGND(ZUT)) .

In conclusion of this section we construct a grammar for L (G)
in Greibach normal form.
We define

Z u

P {[y:x] — tlz:v]lu:x]la, + a + 0}

and

G (z,T,P,[Sy:8_ 1.

Obviously G is in Greibach normal form. It holds

THEOREM 8: It is L(G) = L(G) and more precisely
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it holds
multG(w) = multaiw) for weT*.
The size of |G|l and |G| relate as follows

181 < 32 - Ipgl-IPyl-IXI,

where P = PN U PT’ PN the set of non-terminal and PT the

set of terminal productions.

Proof: We define a homomorphisme h,:T —> R<Z*>
by setting for t€T*

h, () =) ay ) as o [y:xllu:x][z:v].
Y.V
z€X y,u,v
X, X¥y

We use the canonical mapping too

— (%
U : R<Z*> —> R<Z( )>.

We write

h, (w) = Z:_,a m and o_ = <h, (w) ,m>.
1 mez W m 1

u

We have in our case a;, a, € {0,1}, because we start with §

14
to be a grammar.

Because h1 is into R<Z*>we have too a € {0,1} for mez*.

We put

_F
£
]

{mEE*lam#O, u(m) = TS :Srl},

7 (%)

w2(w) = 7 - Wl(w).
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Then we can write

h1(w) = §-_ o -m + Zij o *m
m€W1(w) m€W2(m)

and

< u°h1(w), [Sl:S 1> = E a .

2

Because of

multG(w) <n(w),Sr> = <won(w),[Sl:Sri>

it follows

If

multG(w) z am'

mEW?TW7

Now we assign to each mEWT(w) uniquely a derivation over B.

For this reason we generalize W1 such that instead of [Sl:S

any element of Z may be taken.
Therefore let be for w€T* and z€Z
Wq(w,E) = {m€§*l<h1(w),m> = 1,u(m) = z}.
We construct a bijectiv mapping from W](W,E) on
~ I
Morz(z,w), where # belongs to G.

We take mEWq(w,E) and w = t_ w' and we assume

<h1(to),Eab> = 1, a,b€Z.

I
N |

Because of U (m)

such that

there exists a decomposition w' = Wyt Wy

u(hy(w,)) = b and p(hT(w3)) = a.

r

]
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With that we get with [P| := card P
Gl < 21P, I +41F1<41PI.

Now it is

[Pl = ._ai u; v = 5 ay } a; v
teT u,y,v,X ! t€eT u,y,veX !
z€X zeX

this means

1Bl < 1P 1-1Bl-IXI,

where P is from G. From this follows

1Bl < 8IPyl- 1Pl IXI

ple

and

Gl < 32+ 1Pl - 1P I~ X1,

N

what has to be proofed.

Remark: From this theorem it follows immediately

16

ot R} 2 ) 3
Gl < 3 |Gl -lXL<3|G| .

For large production systems, this means

| = 0(ITI-1Xl), P = O(IXI1)

| P N

T

it holds for [ITI<IX| and ¢ > O

1§ < o(iTl-IxI2)<0(IGI%7E).
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Syntactical congruences

In this section we transfer the syntactical congruences on

our algebra.ﬂR(G) and we study how this congruences relate
(*)

under our representation ¢ :JZR(G) —> R<2 >. In this

connection the following lemma plays a central role.
_x X
LEMMA 10: For w€X let exist an u€Z such that <op(w),
{zo:xo]u>==a#0. Then there exists w’€X; such that
1 —

<z ww',x > = a.

Proof: The proof is by induction on n = |ul.

The case n = O follows from lemma 8.

Now let the being the lemma proofed for all u' with [u'l< n.
U = U][y:x], [y:x] # 0,1, iu1l = n.

Then there exist V1’V2”"’Vm€Xr such that
YV Voe oV /X> = B + O.

By lemma 8 we get

<m(v].,.vm), [v:x]> = B.

Therefore it is

<@ WV, ...V ), fio:xoju[y:x]> >a + B > 0.

So we have
<w(wv1...vm), Izo:xoiu1>> 0.

From this the claim of the lemma follows inductively.



- 29 -~

For L ¢ T* we define as usually
u = V(L) <= x (UWEL <= vwe€lL).

= (L) is the syntactic right congruence.

For an easy formulation of the following results we extend
our alphabet Z by one new element—. But we call the new

alphabet again Z. And we use the appivation $ = 4-[Sl:Sr]

The idea is to annulate words, which have not the form
T§I?§;T-Z* and which are in @(A(G)) by multiplying it from
the left with $. Remember $ - Z = O for z€Z and z # [Sl:Sr]
and $ [Sl:Sr}-Z = 0 for all z€Z.

THEOREM 9: w = O(L) e bh(w) =0
Here is h the homomorphism of theorem 6.

Proof: We assume $-h(w) # O . Applyving lemma 10 we find w' such
that <Sln(ww'),Sr> + 0, and by lemma 9 we have ww'€L. Therefore it
holds w #r o(L) .

On the other hand does there exist w' for w such that w-w'€L, then
by lemma 9 is <Sln(ww'),Sr> # O and therefore $-h(w) * O too.
This proofs our theorem.

This theorem describes a procedure to decide w = O(L) for

L being a c.f. language.

Now we transfer the right congruence touQR(G) by defining
for p,p'€A, (G)

P =, p' (L) < (<p-q,Sr>=o = <p' .q,5r>—_-o) .

v
qEA%(G)

In a symmetrical way one defines the left congruence =1(L).
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One easily sees, that this definitions for R=B or R=N define
congruence relations, but this is not true for R=#or R beeing

a field. The same holds for the following definition of the
syntactical equivalence modulo L:

p =p' (L) = \U/ (<g-p-q',8 >=0 < <q-p'-q',S >=0).
q',qeﬁk(G)

The quotient of.RR(G) by the syntactical congruence yealds the
syntactical algebra .ﬂR(G)/(L).

Because the syntactical monoid even for c.f. languages is hard
to be computed, this holds for.ﬂR(G)/(L) too. Therefore it is
of interest to look for algebras betweeanR(G) and.A%(G)/(L).

We put

4L (L) {pGA%(G) I p = o(L)}

and

(L)

{pEJ%(G) l p=0(L)}.

Obviously it holds

LEMMA ll:xzr(L) is a right ideal.

ML) is a two sided ideal.

Immediately on has the

Corollary to Theorem 9: The word problem w EzQ%(L)
will be decided by $ - ¢(w) for R =N or R =]B.

Now @' (0) is a two sided ideal of A(G) and it is ¢ ' (0)cdL.
Therefore one may ask if w_T(O) has an interesting syntactical
property. Obviously it holds ¢ | (0)eM(L) too.

One may ask if it is possible to prolongate ¢ to a homomorphism
%k -

Yo R(G) —> R<Y( )> with a suitable Y, such that ¢ 1(0) = ML)

holds. Because of lemma 2 one can not do this by a homomorphism

£ *
from R<Z( )> into R<Y( )>. But it could be that such a prolon-



(*)

gation from @ (A(G)) into a suitable R<Y > exists, because

1€9 (R(G)) .

Presumably such a homomorphism does not exist, because each
semigroup homomorphism from Z(*) in R<Y(*)>, which is induced
by transformations [y:x] —> Zqly:x]q' maps the elements
[yv:x]-[z:v] for v ¥ x into O.

Therefore it remains an

Open question: Do there exist non trivial representations
of AR(G)//(/L(L) in R<Y*>?

Answering this question is of practical interest too, because
a section u of a program of a language L is syntactically
incorrect if u = O(L). By means of evaluation of §-¢(w) we are
able to find the Shortestsyntactically incorrect prefix of a
program u L. The representation ofJQR(G)AtﬂL) we are looking
for would do the same for the shortest syntactically incorrect
sections of a program.

One could object that the evaluation of our ring homomorphisms
is not trivial. This is indeed so, if we wish to do this in

a most efficient way. But there are several other important pro-
blems that are reducible on this problem.

We take the opportunity and point out some further problems
which seem to be important.

The syntactical congruence of a language L(G) does not

reflect the structure of G very strongly. It is as with the
week equivalence of two languages L(G) = L(G') does not say
much about relations between G and G'. One of the most
important applycations of language theory is to describe the syntax
of programming or natural languages. The semantic of this
languages depends strongly an the grammars G, which generate
the syntax. Therefore’ it seems to me that the grammars deserve
more interest as the languages. Languages are only one under
different properties of grammar. If the grammars G and G'

describe the syntax of two programming languages and if
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L(G) = L(G') then these languages as programming languages are

not necessarily equal. This leads to the question to formulate
structural equivalencesbetween grammars. Different such equivalences
have been defined but only one of them the "strong" equivalence

is well known. This equivalences will be reflected by the existence
of certain homomorphisms and products between our algebras ﬁ%(G).

We will come back to this problem on another place. Here we

give only a definition of a finer syntactical congruence, which

is identical with the normal one in the case of unambiguous

grammars.

For p,p'€J§(G) we define p congruent syntactically p' modulo G:

p = p'(G) <= v (<qpq',sr> = <qp'q',sr>).
q,q'€ﬂh(G)

We see that the O-classes in both congruences (L) and (G) are

the same.

The word-problem for the gquotient algebra &(G)/(G) is closely

related to the equivalence problem in the case of unambiguous

grammars. Therefore these algebras are as one may assume, hard
to be compute. It is clear that in this connection arise

lot of interesting questions.

For R beeing a field we have
p=p'(G) «p =p' A%&G)/tw.

Therefore in this case.ﬂ%(G)/(G) is the syntactical alaebra
Reutenauer [Re] associated to the formal power series belonging
to the grammar G. We think it very important to study each of
these cases. Restricting to R =% or R to be a field makes im-

portant practical questions disappearing from the theory.

6. Unambiguous grammars, LL(k) grammars

In this section we assume always R = [N and we write therefore only

R(G) for A (G).
By definition it holds for unambiguous grammars

<W’Sr> < 1 for weT*.
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Because of lemma 10 this is equivalent to
<$ - 9(u), a > <1 for u€X* and a€z*.
If one goes through the proof of lemma 10 again, one sees that

the following lemma is true.

LEMMA 12: Let be G an unambiguous c.f. grammar and w-w'€L(G).
Then there exists exactly one monom a€Z such that

o = <S8 'h(w)la
a'= h(w), a,
and o = a' = 1 holds. Here is HyeooXp = XpoooXg.

We assume in the following G to be a LL(k) arammar if not
explicitly the converse will be stated. We are interested

here to study &R(G) and our representation for LL(k) grammars.
As we have shown in lemma 7, it follows from f u-left prime
and Z(f) = u-v, that v € X;. In A(G) we then have

<uv,Q(f)> =1 if Q(f) € X. We call v € X; as almost invers

to u from the right if there exists z € X such that <uv,x> % O.

LEMMA 13: For each u € (XUT)*card X = m there exist maximally

2-mk+2 elements v € X;, which are almost invers to u from the
right side, if G is L L(k).

Proof: Let be v € X; and <uv,y> = 1. Then we can find

f : y —>uv. Because of v € X; f is u left prime. G is LL (k)
and therefore determine u-Firstk(v) and y the derivation tree f
uniquely. Then is v uniquely determined by u-Firstk(v) too.
There exist only mk+1 different words of length k or shorter.
Therefore there exist maximally 2-mk+2 elements which are
almost invers from the right.

Xk
We define for p € R Z( )

lpl = E <p,u>.

Zu€ezZ*

Ipl is the sum of the coefficients of the monoms of p which
contain in the first place an invers out of Z and none else

where.
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LEMMA 14: For all u € X* it holds

lo(u) | < mk*3

Proof: Let be lep = w and <p(u),w =0, w = [z:x]Jw' and

w' € Z*¥, By lemma 10 we find v € X; such that <zuv,§i1# 0.

Now there exists as shown in lemma 14 not more as m elements
v € X; such that <zuv,x> ¥ 0. There do not exists two different
monoms [z:x wi and [z:x]wé which have the same v as "right
inverse." From this we could conclude <zuv,x> >, which is in
contradiction to the unambiguity of G. Therefore we have

indeed l@(n)| < nf Tl

LEMMA 15:Let be u € (XU T)* and [yo:x, 1 € 2.
If — - [yo:xolw(u) # O, then there exists a decomposition

U = ug-u, and w€Z* such that

-l e lyg:xjle(u) = w - (u,), lu,l< k.
Proof: By lemma 10 it follows from -| - [yo:xo]w(u) +# 0, that
there exists g € X; such that <¢(u:q), iyO:xO|> = 1. Therefore
we find f:xo — y,ug in . We decompose u = u,u, such that
u, = 1 for |ul< k and lu2I = k in the other cases. Now let g

be the uniquely determined YoUq ~ left prime factor of f. G is

1
LL(k) and therefore g is uniquely determind by Xq and you-

Therefore in -| - [yO:xO]w(u]) there exists exactly one monom w
which will be not made to be o by multiplication with w(uz).
Therefore we have - - [yo:xo]w(u) = w-m(uz), what the lemma
claims.

From this directly follows

THEOREM 10: The word problem w € L(G),GELL(k) can be decided

in linear space and linear time by multiplying out $ -+ @(u)

sequentielly from left to right.
The method described in this theorem applied even to LR (k)
languages would generally lead to exponentially growing space

complexity.
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The converse of our theorem 10 is not true. There exist c.f.
grammars G for non deterministic languages such that their
word problem can be decided by sequentially multiplying out
from left to right in linear space and linear time.

Definition: We call this class of c.f. languages SMLR(N), iff

I$-9(n)l < N for all u € T*.
Obviously it holds because of lemma 15 and this remarks the

THEOREM 11: 1) The word problem for SMLR(N) can be decided
in linear time and linear space.
2) LL(X) < SMLR(m*'3)

3) LRSM = USMLR(N) is closed under "U".
N

Open problems:

1. Is it decidable for G € c.f. if GESMLR(N) for
fixed N?
2. Is it decidable, if L(G) = L(G') for G,G'€ESMLR(N)?

This section shows that we in our theory get a pure algebraic
definition of the LL(k) languages. We will show in the next

section that this remains true for LR(k) lancuages.

THEOREM 12: @€SMLR(N) is recursively undecidable.

Proof: We show that this question can be reduced on the
correspondence problem of Post[Po].

Let be (u1,81),...,(an,Bn)GX*xX*. The correspondence problem
is the question, if there exists a sequence of natural numbers

i1'12""’imE{1""’n} such that

a, ...0, =B ... B
11 m 1 m

Let S,A,B be new symbols, e. not in X. We form the polynomials



- A Eo) S
pi = A aiA + B BiB, pi =
for i =1,...,n and
. = x. for x.€X
95 j 3o
r = S(S1+Sz)

We ask, does there exist a product f€{pi,pi,qj*f

such that
|S(A+B) f]>2

Obviously this holds iff the correspondence problem

solution.

i

J

has a

In the case of SMLR there are the monoms of p of length < 3.

One reduces the general case onto this special case by

decomposing

i~ Pq,1

where the P; 1 have degree < 3.
i

- pi,li

Let be
q = Aa1...alA+Bb1...er and ai,biEX,
and
1l >r.
A1’ A2, e 4 Al—1 and B1, ee 4 Bl-1 are new symbols. We
define
qq = Aa1A1 + Bb1 77
qi = Ai-TaiAi + i—1biBi for i = 2, . , 1-1,
q; = Al-1alA + B1_1blB.



Here we understand br+1 = ... = bl = 1.
We see q=9y°9y .-+ Qqy-
By doing this decomposition for each pi’pi’ i=1, ... , n

with sets of new variables whose intersection is pairwise

empty, we get a reduction that shows that
IS(A+B) f>»2
remains undecidable even if we restrict our question to the
case degree (pi) < 3.
It remains open, if there exists G such that mG defines our

polynomials.

7. LR(k) - Grammars

We here derive similar results as in the section before. The

'3

SN by L, (G) mod« (L)
the characterisation of LR(k). A first information we get by

only difference comes in by substituting R <X
the following

LEMMA 16: Let G be a LR(k) - grammar and u€T*. If u = 31 +...+ﬁh
@E. (L)) with ﬁi +.0(L), then mﬁ(l?[+1)k holds.

Proof: From ﬁi #rO(L) it follows that there exists v such

that u-ve€L(G). Let be f:Sr —> u-v the derivation of u-v from
S.- Then u Firstk(v) determine uniquely an u-leftbase g of f.
Then Q(g) = ﬁi' This means that u Firstk(v) uniquely determines
the index i by the condition ﬁi'Firstk(v) #ro. Now there are
maximally only (IX[+1)" words £' of length Iv'l< k, which select
an index i by the condition ﬁi'v' #rO(L). Therefore m5(|§|+1)k

as claimed by the lemma.

This lemma not yet characterizes LR(k)-grammars. But goina a
second time through the proof of lemma 17, we see that

ﬁ1, ...,ﬁm have a common prefix, which uniquely is determined
by u. This we see from the decomposition u = ug-u, such that

|u2| = k. Therefore it holds one direction of the

in



THEOREM 13: The c.f. grammar G is of type LR(k) iff for each
u€T* it holds u = 4-p, Uext, p = ¥

+...+8_, Y.ex* and |U. < k.
m i i'=

1 1

To proof this theorem completely it is sufficient to show,
that the word problem wé€L(G) can be decided by a deterministic
pda. We will not proof this here, because it is a simple
consecuence of the following theorem, which concerns a more
general class of c.f. languages.

We generalize LR(k) as before LL(k) in the following

Definition: The c.f. grammar G is in the class BSLR(N) iff for
all u€T* holds:

= . e = a * .
from u o, ﬁ1+...+am unﬁa&JL)),L L(G), U € X7, oy E€R
_J1 if o, # O

“lo if ot = o.
1

R =N it follows % Illa il <N, o
i=1

The letters BS come from gounded size and LR from the use of

the right congruence =r(L).

THEOREM 14: The word problem wéL(G) for G BSLR(N) can be decided

sequentially in time O(|w]).

Proof: We first give the idea of the proof. For each of the
words u, we have to compute $w(ﬁi) to decide U, = O(L). This
computation can be done sequentially because GiGXT. But to
compute $®(ui-n(+)) is more difficult, because ﬁi-z, can produce
several words in Xi,
could lead to a n2 algorithm. We overcome this difficulty by

which are of very difficult length. This

computing for each prefix v of u, all possible results of
vez for z€Xr in advance. It will happen in this computations
that we get the same word uy in different ways. Therefore we
have this to check, or to use a data structure, which makes

this checking superfluous.



To proof our theorem we define two new functions.

*
For f€R<X( )> we define

suffix (f) = {zezlg<f,vz> * O}.
To each X€Xl we assign a mapping Y (x) : 2Z —> 2Z by definition
v(x) (z) = {yl3<e(x),zvy> * O},

and

p(x)(Z2') = ;gé. Y(x) (z) for Z'cz.

It follows immediatly
suffix($ ¢ (ux)) = Y (x) (suffix($ ¥ (u)).

This property we use to compute u-t = Vﬁ+...+5£(ﬂ§)
It holds in £_(G) for U, = u!-x,
R i i1

D RRL-ASNLES 3 SRR

i z€X i z€Xr
yEX

w(z)sufflx(ui)¢¢ y€§
This relation is recursiv because the second sum is of the
same character as the whole sum. The recursion could run |ul

steps, what would lead to a Iu[2 algorithm. To use this
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relation more efficiently, we construct a tree like data
structur which represents §1+...+ﬁﬁ by a tree and which con-

tains feed back edges to shorten the recursion.

Definition of the tree T(u).
T(u) is an oriented tree. The root of the tree is $. The other
vertices of the tree are {vliv prefix of ﬁi}. The set of edges

is
{(v,x) | vx prefix of aﬁi, xexl}.

v is the start vertex of (v,x) and vx the end vertex of (v,x).

We label the vertices of T(u) by
p(v) = $‘suffix(v).
From our recursive relation it follows
p(vx) = v(x) (pl(v)).
This means that p can sequentially be computed 6n the tree.

Now we introduce backward edges in T (u).

There exists a backward edge from vy to v, iff

v, is prefix of Vir vy F Vo
and
if vy = VotV then there exists X€Xr and z€Xl

such that <vx,z> % O.

We denote this edge by (v1,v2,x,z). vy is the start vertex
and v, the end vertex and <x,2z> is the 'label' of (v1,v2,x,z).
The number of backward edges from Vs is bounded by IXrl-N,

otherwise we got a contradiction to the assumtion GEBSLR(N).
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We have Uu€L(G) iff S_ is edge in T(u). To proof our theorem
it is therefore sufficient to show, that T(u-t) can be con-
structed in constant time from T(u). To proof this we look

at the vertex ui.

a) Let <n(t),z> #+ 0O and zEXl.
By computing w(z)u(ui) we decide if (ui,z) is
an edge in T(u-t). The time for this computation

depends only on G, not on jut].

b) Let <n(t),z> # O and z€Xr.
We look through the backward edges from u if
there are some with the label <x,z>. If (v1,v2,x,z)

is a backward edge, then (vz,x) is an edge in T(u-t).

We maximally have to look through

edges. This number again depends only on G.

c) We have to compute the new backward edges for
t(u-t).
Let be vx a new vertex in T(ut). Then for all yEXr

we compute

z
VXY = v-zz:; o . Z.

zex =¥

This we can do as before under b) by using the back-
ward edges from v. Again we need not more as NZ-IXI2

steps.

d) It is not necessary to delete the edges of T(u),
which do not appear in T(ut) explicity by keeping
a list of the 'leafs' of the tree. Notice 'leaf'

means here the vertices, which represent one of the u; -
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