Please use this identifier to cite or link to this item: doi:10.22028/D291-26302
Title: On the reflexivity of multivariable isometries
Author(s): Eschmeier, Jörg
Language: English
Year of Publication: 2005
DDC notations: 510 Mathematics
Publikation type: Other
Abstract: Let A\subsetC(K) be a unital closed subalgebra of the algebra of all continuous functions on a compact set K in \mathbb{C}^{n}. We define the notion of an A-isometry and show that, under a suitable regularity condition needed to apply Aleksandrov's work on the inner function problem, every A-isometry T\in L(\mathcal{H})^{n} is reflexive. This result applies to commuting isometries, spherical isometries, and more general, to all subnormal tuples with normal spectrum contained in the Bergman-Shilov boundary of a strictly pseudoconvex or bounded symmetric domain.
Link to this record: urn:nbn:de:bsz:291-scidok-44893
hdl:20.500.11880/26358
http://dx.doi.org/10.22028/D291-26302
Series name: Preprint / Fachrichtung Mathematik, Universität des Saarlandes
Series volume: 125
Date of registration: 15-Feb-2012
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
preprint_125_05.pdf136,05 kBAdobe PDFView/Open


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.