Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
doi:10.22028/D291-25225
Dateien zu diesem Datensatz:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
RR_94_11_.pdf | 3,53 MB | Adobe PDF | Öffnen/Anzeigen |
Titel: | A consequence-finding approach for feature recognition in CAPP |
VerfasserIn: | Hinkelmann, Knut |
Sprache: | Englisch |
Erscheinungsjahr: | 1994 |
Quelle: | Kaiserslautern ; Saarbrücken : DFKI, 1994 |
Kontrollierte Schlagwörter: | Künstliche Intelligenz |
DDC-Sachgruppe: | 004 Informatik |
Dokumenttyp: | Forschungsbericht (Report zu Forschungsprojekten) |
Abstract: | We present a rewriting approach for a consequence-finding inference of logic programs. Consequence finding restricts the derivations of a logic program to exactly those facts that depend on an explicitly given set of initial facts. The rewriting approach extends the Generalized Magic Sets rewriting, well-known from deductive databases, by an up propagation in addition to the usual down propagation. The initial motivation for this inference was to realize the abstraction phase of a knowledge-based CAPP system for lathe turning. The input to the CAPP system is a detailed description of a workpiece. During the abstraction phase characteristic parts, called features, are recognized for which predefined skeletal plans exist. Consequence finding is a method to restrict the computation such that exactly the features of the actual workpiece are derived. The same inference can also be used for checking integrity constraints: given an update of a deductive database or a logic program, consequence finding applies only those rules that are effected by the update operation. |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291-scidok-50425 hdl:20.500.11880/25281 http://dx.doi.org/10.22028/D291-25225 |
Schriftenreihe: | Research report / Deutsches Forschungszentrum für Künstliche Intelligenz [ISSN 0946-008x] |
Band: | 94-11 |
Datum des Eintrags: | 7-Feb-2013 |
Fakultät: | SE - Sonstige Einrichtungen |
Fachrichtung: | SE - DFKI Deutsches Forschungszentrum für Künstliche Intelligenz |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.