A Consequence-Finding Approach for Feature Recognition in CAPP

Knut Hinkelmann

March 1994
Deutsches Forschungszentrum für Künstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum für Künstliche Intelligenz, DFKI) with sites in Kaiserslautern and Saarbrücken is a non-profit organization which was founded in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz, Fraunhofer Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, SEMA Group, and Siemens. Research projects conducted at the DFKI are funded by the German Ministry for Research and Technology, by the shareholder companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and other related subfields of computer science. The overall goal is to construct systems with technical knowledge and common sense which - by using AI methods - implement a problem solution for a selected application area. Currently, there are the following research areas at the DFKI:

- Intelligent Engineering Systems
- Intelligent User Interfaces
- Computer Linguistics
- Programming Systems
- Deduction and Multiagent Systems
- Document Analysis and Office Automation.

The DFKI strives at making its research results available to the scientific community. There exist many contacts to domestic and foreign research institutions, both in academy and industry. The DFKI hosts technology transfer workshops for shareholders and other interested groups in order to inform about the current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI researchers from Germany and from all over the world. The goal is to have a staff of about 100 researchers at the end of the building-up phase.

Friedrich J. Wendl
Director
A Consequence-Finding Approach for Feature Recognition in CAPP

Knut Hinkelmann

DFKI-RR-94-11
A Consequence-Finding Approach for Feature Recognition in CAPP

Knut Hinkelmann
DFKI (German Research Center for Artificial Intelligence)
Postfach 2080, 67608 Kaiserslautern, Germany
Email: hinkelma@dfki.uni-kl.de

Abstract

We present a rewriting approach for a consequence-finding inference of logic programs. Consequence finding restricts the derivations of a logic program to exactly those facts that depend on an explicitly given set of initial facts. The rewriting approach extends the Generalized Magic Sets rewriting, well-known from deductive databases, by an up propagation in addition to the usual down propagation. The initial motivation for this inference was to realize the abstraction phase of a knowledge-based CAPP system for lathe turning. The input to the CAPP system is a detailed description of a workpiece. During the abstraction phase characteristic parts, called features, are recognized for which predefined skeletal plans exist. Consequence finding is a method to restrict the computation such that exactly the features of the actual workpiece are derived. The same inference can also be used for checking integrity constraints: given an update of a deductive database or a logic program, consequence finding applies only those rules that are effected by the update operation.
Contents

1 Introduction .. 3

2 Feature Recognition ... 4

3 Integrity Constraints .. 7

4 Consequence Finding ... 9

5 How to Implement Consequence Finding 10
 5.1 Generalized Magic Sets Rewriting 11
 5.2 Consequence-Finding Transformation 12
 5.3 Specifying initial Facts 14

6 Conclusion ... 16
1 Introduction

In order to create a knowledge-based CAPP (Computer-Aided Process Planning) system for lathe turning [Bernardi et al., 1991] we studied the actions of a human process planner [Klauck et al., 1993]: regarding process planning as a problem-solving task, this procedure can be seen as an instance of the "Heuristic Classification" inference scheme [Clancey, 1985] (see Fig. 1). The expert is given the description of a workpiece (see Fig. 2). It consists of all geometrical and technological data which are necessary to generate the process plan. These data describe the surfaces of the workpiece on a very detailed level. To generate a work plan the expert abstracts from these details and looks for characteristic parts, so-called features, of the workpiece for which he has in mind (or in a library) a number of prefabricated skeletal plans. The connection of features and associated skeletal plans reflects the experience of the expert. The skeletal plans play the role of cases in case-based reasoning [Kolodner, 1993]. The final plan is created by merging the abstract skeletal plans associated to the recognized features and by adapting them for the particular workpiece.

It is important to realize that this observation implies that the features and skeletal plans depend on the concrete expert as well as on the concrete working environment and may vary for different companies. Therefore, in order to have a general solution for an automated CAPP system which is transferable to a changing environment, we have developed a domain-specific shell on top of a hybrid knowledge representation formalism by extending and specializing well-known knowledge representation and reasoning techniques. The shell consists of domain-specific representation languages which offer all the necessary constructs to describe the workpiece, the features, and the skeletal plans. Thus, in order to build a particular application it is easy to represent the domain-specific features and associated skeletal plans. The shell offers all the inferences for the abstraction, match, and refinement phase of the problem-solving process (Fig. 1). Inference engines of the hybrid knowledge representation and compilation laboratory CoLAB [Boley et al., 1993] have been tailored for the production planning application (e.g. [Meyer and Müller, 1993; Meyer and Müller, 1993; Baader and Hanschke, 1992]).

\[
\text{problem class (workpiece features)} \xrightarrow{\text{match}} \text{principal solution (skeletal plans)}
\]

\[
\text{abstraction} \quad \xrightarrow{} \quad \text{refinement}
\]

\[
\text{concrete problem (workpiece data)} \quad \xrightarrow{\text{match}} \quad \text{concrete solution (NC program)}
\]

FIGURE 1: Heuristic Classification Inference Scheme
FIGURE 2: Lathe-turning Workpiece

In this paper we will present a consequence-finding inference for the abstraction phase of CAPP. Consequence finding restricts the derivations of a logic program to exactly those facts that depend on an explicitly given set of initial facts, e.g. the description of the actual workpiece. The inference procedure is not strictly bottom-up but also relies on the proof of conditions. To integrate these bottom-up and top-down phases, we extend well-known query-answering techniques for deductive databases, propagate query information down at compile-time, and reason strictly bottom-up at run-time. This set-oriented evaluation is efficient, in particular, if the facts reside on a database. This is especially useful since in general software systems are not used stand-alone but must have interfaces to already existing software and data. Thus, the presented realization of the consequence-finding inference not only is an elegant way to integrate bottom-up and top-down evaluation as it is necessary for this application but it also serves as a link to allow access to data stored in conventional databases.

2 Feature Recognition

The application problem we are dealing with for the rest of the paper is the abstraction phase of CAPP: the generation of an abstract feature description of the workpiece is the first step of the process planning process. The importance of feature recognition stems from the fact that each feature can be associated with knowledge about how the feature should be manufactured. From this point of view, feature recognition forms a major component of the CAD/CAM interface for CAPP [Chang, 1990].

The workpiece is composed of adjacent rotational-symmetric surfaces that are fixed to the symmetry axis of the lathe work. Attributes of each surface carry detailed geometrical and technological information. Since the surfaces are fixed to an axis,
they can be characterized by four rational numbers r_1, r_2, c_1, and c_2, two radii and two coordinates (Fig. 3). An important geometric element is the truncated cone. This surface can be specialized to a cylinder by restricting the radii as being equal. Similarly, the definitions of ascending and descending truncated cones, rings, etc. can be obtained by specialization. In addition to this geometric data the surfaces have attributes for technological information. There are also topological relationships specifying which surfaces are adjacent.

Most features cover a number of surfaces. This means that it is natural to define a feature as consisting of simpler features (and having some additional requirements, e.g. neighborhood). The basic components of a feature are surfaces of the workpiece. In Figure 4 it is shown schematically that the feature shoulder can be recognized, if we can find two neighboring surfaces, a cylinder and a ring. With two shoulders that share their ground surface we can build another feature, called a groove. Thus, finding a feature means to find instances representing the components and to generate a new instance aggregating the simpler features using e.g. part-of attributes. Therefore, feature recognition is equivalent to the aggregation of its components.

In [Hanschke and Hinkelmann, 1992] we have suggested a hybrid declarative formalism for the abstraction phase of heuristic classification. Following the distinction between concepts and instances, it is rather natural to define all the possible features and surfaces as concepts in a terminological language and to represent a single case, i.e. a workpiece, by assertions. Since terminological reasoning systems as also used in COLAB directly support the abstraction mechanisms generalization
FIGURE 5: A Feature Tree Resulting from the Abstraction Phase

and classification but do not bother about aggregation, we have integrated terminological reasoning with a logical rule component: Horn clauses are a declarative knowledge-representation formalism for logic programming which serve also as query language for deductive databases [Minker, 1988; Kowalski, 1991]. Rules for feature aggregation can be expressed as Horn clauses in a natural way. The (simplified) rule\(^1\)

\[
\text{shoulder}(f(X, Y)) \leftarrow \text{cylinder}(X), \\
\text{ring}(Y), \\
\text{neighboring}(X, Y)
\]

specifies that a cylinder and a neighboring ring can be regarded as a shoulder (see Fig. 1).

The task of the feature aggregation phase is to derive all the features appearing on the workpiece. Similar to parsing strategies, a bottom-up reasoning approach is most appropriate, since it is not known in advance, which kinds of features are present in the workpiece [Klauck and Mauss, 1992]. In bottom-up reasoning systems a rule is applied, if all its premises are satisfied. Then, starting from the workpiece’s surfaces, a features tree is successively build up (Fig. 5). Let the workpiece description contain the following assertions:

\[
\text{cylinder}(\text{cyl1}) \\
\text{ring}(\text{rng2}) \\
\text{neighboring}(\text{cyl1}, \text{rng2})
\]

\(^1\)For reasons of simplicity we omitted, for instance, details of checking coordinates of feature components and technological requirements.
Then applying the above rule, bottom-up evaluation will derive that \(f(\text{cyl1, rng2}) \) is a shoulder, since all the premises of the rule are satisfied by the facts.

Bottom-up reasoning starts with all the facts in the working memory. In each phase, however, only a subset of the rules are needed. For the abstraction phase, for instance, we want to apply only those feature rules that can be satisfied with facts representing the surfaces of the actual workpiece. This can be achieved by modularization of the rules, such that in each phase (abstraction, match, refinement, Fig. 1) only the relevant subset of the rules is accessible.

A further problem is that we do not want to use all the available facts in each phase. For the abstraction phase we must have access to facts representing the actual workpiece, while others are not needed. Depending on the environment in a real company, data often do not reside in a working memory but must be retrieved from a database. But in a database there might be data representing many workpieces. Additionally, there are data about many other things that are not needed in the abstraction phase and thus should not be used for testing rule applicability in this phase. An example are the facts about the tools that can be used to manufacture the workpiece which are selected in the refinement phase [Meyer, 1992].

For feature aggregation we have developed a consequence-finding inference which derives the consequences of an explicitly given set of facts wrt to a theory of logical formulas. The theory in our case is the set of rules defining workpiece features and the initial facts are the facts describing one particular workpiece. The consequence-finding inference makes sure that exactly those facts are derived which are consequences of these initial facts.

3 Integrity Constraints

The same consequence-finding inference that is applied for feature aggregation can also be used to detect whether database updates (e.g. because of changes in the design of the workpiece) would lead to inconsistencies. Consider a logic program with integrity constraints denoting negative or disjunctive knowledge. These integrity constraints are represented as denials, i.e. clauses with empty head. Eshghi and Kowalski use this kind of integrity constraints for their abduction procedure [Eshghi and Kowalski, 1989]. We can also represent them as clauses with the special atom inconsistent as conclusion [Manthey and Bry, 1987].

Example 1 Let \(S_1 \) and \(S_2 \) be two surfaces and let the relations coordinate1 and coordinate2 denote the attributes \(c_1 \), and \(c_2 \) of the surface (see Fig. 3) Then the following rule demands that two connected solids must coincide at their contact
point:

\[
\begin{align*}
\text{inconsistent} & \leftarrow \text{neighboring}(S1, S2), \\
 & \quad \text{coordinate2}(S1, C1), \\
 & \quad \text{coordinate1}(S2, C2), \\
 & \quad C1 \neq C2.
\end{align*}
\]

A real database will have many of these integrity constraints. Let's assume that the facts

\[
\begin{align*}
\text{coordinate2}(\text{cyl1}, 5) \\
\text{coordinate1}(\text{truncone2}, 6)
\end{align*}
\]

are in the database. Now we want to connect these elements. Using a proof-finding approach one has to assert the new fact \textit{neighboring(cyl1, truncone2)} and then ask the query

\[
? \cdot \text{inconsistent}
\]

This procedure would invoke all integrity constraints in backward direction even if they are independent from the new fact. Instead, it would be more efficient to derive only those facts that are consequences of this new assertion. In [Eshghi and Kowalski, 1989] it is argued to do this kind of constraint checking by forward reasoning starting with the new fact. Forward reasoning alone, however, is not sufficient.

Example 2 Consider the following program:

\[
\begin{align*}
\text{endpoint}(X) & \leftarrow \text{cone}(X), \text{radius2}(X, 0) \\
\text{startpoint}(X) & \leftarrow \text{cone}(X), \text{radius1}(X, 0) \\
\text{cone}(c1) & \leftarrow \text{cone}(c1) \\
\text{radius1}(c1, 0) & \leftarrow \text{radius1}(c1, 0) \\
\text{radius2}(c1, 20) & \leftarrow \text{radius2}(c1, 20) \\
\text{cylinder}(\text{cyl1}) & \leftarrow \text{cylinder}(\text{cyl1})
\end{align*}
\]

The following integrity constraints say that you cannot connect two elements if there is no surface but only a point at the end of one element (see Fig. 6):

\[
\begin{align*}
\text{inconsistent} & \leftarrow \text{neighboring}(I1, I2), \\
 & \quad \text{endpoint}(I1) \\
\text{inconsistent} & \leftarrow \text{neighboring}(I1, I2), \\
 & \quad \text{startpoint}(I2)
\end{align*}
\]

Adding the new fact \textit{neighboring(cyl1, c1)} would lead to an inconsistency which will not be detected by forward chaining alone. Additionally we need to prove whether the premise \textit{startpoint(c1)} can be satisfied.
The extended SLDNF resolution of [Sadri and Kowalski, 1988] combines forward and backward chaining depending on whether a positive or negative literal is resolved upon. In [Manthey and Bry, 1987] a model-generation approach has been applied for this problem. In the following we will regard checking of integrity constraints as a consequence-finding problem. We will restrict the generation of a complete minimal model by specializing the relevant rules. Instead of using a backward-chaining component to prove premises, we apply the Generalized Magic Sets rewriting algorithm well-known from deductive databases.

4 Consequence Finding

Consequence-finding had been investigated intensively after the resolution principle has been invented but then hasn't been studied very much for a number of years. Recently, [Inoue, 1991] presented a consequence-finding implementation based on ordered linear resolution. In this section we will give an overview on consequence finding. Then in the next section we will present an approach that is efficient for applications that use data on external databases.

The consequence-finding problem [Lee, 1967] may be formulated as:

Given a set of statements A_1, \ldots, A_n, find a statement B such that B follows from A_1, \ldots, A_n [Slagle et al., 1969].

There are a number of specializations of this general formulation. They are characterized by restrictions of the statement B which we are interested in. In [Lee, 1967] the consequence-finding problem is expressed in a more restricted form:

Given a set of formulas T and a resolution procedure P, for any logical consequence D of T, can P derive a logical consequence C of T such that C subsumes D?

In [Slagle et al., 1969] consequence finding is examined for prime (non-trivial) consequences. Also proof finding can be regarded as a special case of consequence finding if B is the empty clause.
Inoue presents an extended ordered linear resolution strategy which is complete for consequence finding in the sense that only clauses having a certain property (called characteristic clauses) should be found [Inoue, 1991]. A useful specialization is to compute exactly the newly derivable consequences caused by new information added to the theory. These new consequences are called new characteristic clauses.

Here we will adapt this latter version of the consequence-finding problem for logic programs. In logic programming, deductive databases, and rule-based reasoning we are not interested in general consequences but only in ground unit clauses (i.e. ground facts). Thus, our consequence-finding problem can be informally described as:

Given a set of Horn clauses T and a set of ground unit clauses $F \subseteq T$ (F is called the set of initial facts), derive all the consequences B of T such that B is a ground unit clause and at least one clause $C \in F$ has been used to derive B.

5 How to Implement Consequence Finding

From Example 2 about integrity constraints it became clear that forward chaining and backward chaining may interchange to solve the consequence-finding problem. An obvious approach would be to use an integrated system with forward and backward chaining components.

The forward chaining process starts with the set F of initial facts. A rule

$$ C \leftarrow P_1, \ldots, P_n $$

is triggered if at least one $P_i, i \in \{1, \ldots, n\}$ is unifiable with a fact $f \in F$. Then the remaining premises have to be proved. Besides changing the implementation, this can be achieved by a program transformation declaring the premises as backward-provable and evaluating them by the backward chaining component. Since each of the premises can serve as a trigger premise, this approach is equivalent to the following transformation of the above rule:

$$ C \leftarrow \text{prove}(P_1), \ldots, \text{prove}(P_n) $$

The rules are evaluated by forward chaining. Each premise can act as a trigger while the remaining ones have to be tested by backward chaining. The predicate prove acts as a built-in operator activating the backward chaining component to prove its argument.

In the following we will present a rewriting approach for consequence finding which avoids a call to the backward chaining system. It is an extension of well-known rewriting techniques for query-answering in deductive databases. These techniques allow
query answering by bottom-up evaluation. Information about variable bindings given by the query is propagated down into the bodies of the rules at compile-time. When the rewritten program is evaluated by a bottom-up fixpoint procedure like semi-naive evaluation [Bancilhon and Ramakrishnan, 1986], only those facts are derived that are necessary to answer a query. Since these techniques in some sense integrate bottom-up and top-down reasoning, it seems natural to extend them for consequence finding.

5.1 Generalized Magic Sets Rewriting

Before we will present the consequence-finding transformation, let us first give an impression of the rewriting techniques for query answering. Readers already familiar with this approach may skip this subsection. Rewriting strategies like Generalized Magic Sets [Bancilhon et al., 1986; Beeri and Ramakrishnan, 1991] or more recently Magic Templates [Ramakrishnan, 1988] have been developed for efficient query answering in deductive databases. Magic-Sets rewriting propagates the values of bound arguments of a query down to the premises of applicable rules at compile time. Consider a logic program containing two rules:

\[
\begin{align*}
 r(X, Y) &\leftarrow l(X, Z), s(Z, Y) \\
 s(Z, Y) &\leftarrow u(W, Z), v(Y)
\end{align*}
\]

and the query

\[
?\cdot r(a, Y)
\]

By using a top-down query answering approach, the query would be unified with the head of the first clause binding variable \(X \) to \(a \). This means that \(t \) is also called with first argument bound to \(a \). Bottom-up reasoning, however, does not have this kind of information passing. The only kind of information passing for bottom-up reasoning is called sideway information passing: by solving a premise predicate variable bindings are obtained which can be passed to another premise in the same rule to restrict the computation for that predicate. Magic-Sets rewriting introduces an additional premise \(\text{magic}_{bf}(X) \) to imitate the information passing strategy of top-down reasoning by sideway information passing. The arguments of the new premise correspond to the bound arguments of the query. To pass the actual value of \(X \), a new fact called Magic Seed – is asserted. A superscript \(bf \) denotes that (according to a sideway information passing strategy) the first argument of a literal is bound and the second argument is free:

\[
\begin{align*}
 t_{bf}(X, Y) &\leftarrow \text{magic}_{bf}(X),
 l_{bf}(X, Z),
 s_{bf}(Z, Y),
 \text{magic}_{bf}(a)
\end{align*}
\]
Now, evaluating this rule by a bottom-up strategy will satisfy the first premise \(magic.r^b(X) \) with the new fact binding \(X \) to \(a \) as it would be the case by top-down evaluation. By satisfying the second premise with \(X \) bound to \(a \) - the variable \(Z \) will also be bound such that the computation of \(s \) will be restricted, too. The Generalized Magic Sets method further propagates this binding down to the rules defining \(t \) and \(s \). For further details see [Beeri and Ramakrishnan, 1991].

5.2 Consequence-Finding Transformation

Now we will extend Generalized Magic Sets (GMS) to support the consequence-finding inference. Instead of calling a backward chaining system to prove the remaining premises of triggered rules, we can apply the GMS rewriting approach. It specializes a logic program by introducing additional rules and predicates. When the rewritten programs are evaluated by a bottom-up fixpoint procedure, exactly the consequences of the initial facts are derived. In our system we use the semi-naïve evaluation strategy for logic programs [Bancilhon and Ramakrishnan, 1986] which avoids multiple derivations of equivalent facts. Because it is a set-oriented strategy it is very efficient if facts have to be retrieved from a database.

GMS rewriting needs a query to start the transformation. For consequence finding, however, we do not have a query but a number of facts from which to reason forward. For the consequence-finding inference, the down propagation of the Generalized Magic Sets rewriting is extended by an up propagation phase. For the initial facts we can find the applicable rules by testing if a premise is unifiable with an initial fact. The remaining premises of this rule have to be proved. This means that a GMS rewriting has to be made for them. Their adornments can be derived by the sideways information passing strategy. For each of the rules found in this first step we now look for successor rules, i.e., rules which have a premise that is unifiable with the conclusion of an already found rule. For the premises of these rules again a GMS rewriting is made. Finding successor rules corresponds to the up-propagation phase. The propagation stops if no new successor rule is found. In the following we will demonstrate bottom-up consequence finding with an example.

Example 3 Consider a logic program containing the following rules where the predicates \(b_1, b_2, b_3, b_4 \), and \(b_5 \) are base predicates:

\[
\begin{align*}
 r_1: & \quad p(X, Y) \leftarrow p_1(X, Z), b(Z, V), p_2(X, V, Y) \\
 r_2: & \quad q(U, V, W) \leftarrow q_1(U, Z, W), p(Z, V) \\
 r_3: & \quad p_1(X, Z) \leftarrow b_1(Z, V), b_2(Y, X) \\
 r_4: & \quad p_3(X, Y) \leftarrow b_3(X, V, Z), b_4(Z, Y) \\
 r_5: & \quad q_1(U, Z, W) \leftarrow b_1(Z, V), b_5(U, X, W)
\end{align*}
\]

Let's assume we want to derive the consequences of the fact \(b(a, b) \). That is, the
Upmagic Seed specifying the bound arguments of the initial facts for consequence finding is

\[\text{upmagic}_b(a, b) \]

To derive the consequences of a given fact, a first step is to select all the rules which can be triggered by this fact. In our example it is rule \(r_1 \). The arguments of the initial fact \(\text{upmagic}_b(a, b) \) bind variables \(Z \) and \(V \) by bottom-up propagation. If we assume that the sideways information passing strategy is determined by a left-to-right evaluation of the remaining premises, we see that we have to prove \(p_1^{fb}, p_3^{bbf} \). Thus, the rewritten rule \(r'_1 \) is

\[
p(X, Y) \leftarrow \text{upmagic}_b(Z, V), \\
p_1^{fb}(X, Z), \\
p_3^{bbf}(X, V, Y)
\]

The derived facts of rule \(r_1 \) can themselves trigger further rules. In our example rule \(r_2 \) is such a successor rule. Analogously as before, the values for \(p(X, Y) \) are propagated up to rule \(r_2 \), resulting in the following rule:

\[
q(U, V, W) \leftarrow p(Z, V), q_1^{bbf}(U, Z, W)
\]

For the adorned predicates \(p_1^{fb}, p_3^{bbf} \) (from rule \(r_1 \)) and \(q_1^{bbf} \) (from rule \(r_2 \)) we apply the usual Generalized Magic Sets rewriting, propagating the initial values down to the rules defining \(p_1, p_3 \) and \(q_1 \):

\[
p_1^{fb}(X, Z) \leftarrow \text{magic}_p p_1^{fb}(Z), \\
\quad b_1(Z, Y), \\
\quad b_1(Y, X)
\]

\[
p_3^{bbf}(X, V, Y) \leftarrow \text{magic}_p p_3^{bbf}(X, V), \\
\quad b_3(X, V, Z), \\
\quad b_4(Z, Y)
\]

\[
q_1^{bbf}(U, Z, W) \leftarrow \text{magic}_q q_1^{bbf}(Z), \\
\quad b_1(X, Z), \\
\quad b_5(U, X, W)
\]

The argument values of the trigger fact, i.e. the initial fact \(\text{upmagic}_b(a, b) \) and the derived consequences \(p(Z, V) \), are propagated up as initial values (seeds) for these rules:

\[
\text{magic}_p p_1^{fb}(Z) \leftarrow \text{upmagic}_b(Z, V) \\
\text{magic}_p p_3^{bbf}(X, V) \leftarrow \text{upmagic}_b(Z, V), p_1^{fb}(X, Z) \\
\text{magic}_q q_1^{bbf}(Z) \leftarrow p(Z, V)
\]

This kind of transformation has to be performed for each of the initial facts. Then the evaluation of the rewritten program by a bottom-up reasoning system, e.g. the semi-naive strategy, solves the consequence-finding problem.
5.3 Specifying initial Facts

Instead of explicitly giving a single initial fact as in Example 3, there are a number of possibilities for specifying multiple initial facts. The transformation itself does not change, only the representation of the Upmagic Seed has to be adapted.

- For a set of initial facts an Upmagic Seed is generated for each element of the set. For a workpiece the initial facts are the descriptions of the surfaces. The set of initial facts may be \(F = \{cylinder(cyl1), ring(rng2), cylinder(cyl3)\} \). The corresponding seeds are:

 \[
 \begin{align*}
 \text{upmagic} &. \text{cylinder}(cyl1) \\
 \text{upmagic} &. \text{ring}(rng2) \\
 \text{upmagic} &. \text{cylinder}(cyl2)
 \end{align*}
 \]

 The first and third fact differ only for their constants. This means that exactly the same transformation will be made for them. This is recognized by the rewriting algorithm: each rule will be generated exactly ones.

- It is not necessary to explicitly present every initial fact. To express that every surface neighboring cylinder cyl1 should serve as initial fact we can use a variable: \(neighboring(cyl1, X) \). In this case the Upmagic Seed cannot be expressed by a single fact since it is not range-restricted. The following rule, however, accomplishes the needs:

 \[
 \begin{align*}
 \text{upmagic} &. \text{neighboring}(cyl1, X) \leftarrow \\
 \text{neighboring} &. (cyl1, X)
 \end{align*}
 \]

 Variables can also be used to express conditions about initial facts, for instance, if two arguments should coincide in their values: \(b(X, Y, X) \).

- For feature aggregation we can go one step further: since for the facts describing the workpiece surfaces all arguments are bound, we need to tell the rewriting algorithm only the predicates representing the surfaces, e.g. \(\{\text{truncone, cylinder, ring}\} \). The corresponding Upmagic Seeds are:

 \[
 \begin{align*}
 \text{upmagic} &. \text{truncone}(X) \leftarrow \text{truncone}(X) \\
 \text{upmagic} &. \text{cylinder}(X) \leftarrow \text{cylinder}(X) \\
 \text{upmagic} &. \text{ring}(X) \leftarrow \text{ring}(X)
 \end{align*}
 \]

 The facts describing the workpiece trigger these rules, which themselves trigger the rules deriving their consequences. Thus, the rewritten rule system then is a specialized rule system, which exactly derives the feature tree for every workpiece. This means, that rewriting has to be done only once after the feature rules have been defined and the specialized rule system can be reused for various workpieces.
Similar to \mathcal{LDL} [Naqvi and Tsur, 1989], we can also give fact forms as initial facts: it is sufficient to tell the rewriting algorithm which of the arguments are bound (designing them with a special symbol $\$\$) instead of explicitly giving the value of bound arguments, e.g. $\text{neighboring}(\$, X)$.

Example 4 Consider again the rules and facts of Example 1

\[
\begin{align*}
\text{endpoint}(X) & \leftarrow \text{cone}(X), \text{radius2}(X, 0) \\
\text{startpoint}(X) & \leftarrow \text{cone}(X), \text{radius1}(X, 0) \\
\text{cone}(c1) & \\
\text{radius1}(c1, 0) & \\
\text{radius2}(c1, 20) & \\
\text{cylinder}(\text{cyl1}) & \\
\end{align*}
\]

with integrity constraints

\[
\begin{align*}
\text{inconsistent} & \leftarrow \text{neighboring}(11, 12), \\
& \quad \text{endpoint}(11) \\
\text{inconsistent} & \leftarrow \text{neighboring}(11, 12), \\
& \quad \text{startpoint}(12)
\end{align*}
\]

If the initial facts are specified as $\text{neighboring}(X, Y)$, the rewritten knowledge base is:

\[
\begin{align*}
\text{upmagic}_{\text{neighboring}}(X, Y) & \leftarrow \\
& \quad \text{neighboring}(X, Y) \\
\text{inconsistent} & \leftarrow \text{upmagic}_{\text{neighboring}}(11, 12), \\
& \quad \text{endpoint}^b(11) \\
\text{inconsistent} & \leftarrow \text{upmagic}_{\text{neighboring}}(11, 12), \\
& \quad \text{startpoint}^b(12) \\
\text{endpoint}^b(X) & \leftarrow \text{magic}_{\text{endpoint}}^b(X), \\
& \quad \text{cone}(X), \\
& \quad \text{radius2}(X, 0) \\
\text{startpoint}^b(X) & \leftarrow \text{magic}_{\text{startpoint}}^b(X), \\
& \quad \text{cone}(X), \\
& \quad \text{radius1}(X, 0) \\
\text{magic}_{\text{endpoint}}^b(11) & \leftarrow \\
& \quad \text{upmagic}_{\text{neighboring}}(11, 12) \\
\text{magic}_{\text{startpoint}}^b(12) & \leftarrow \\
& \quad \text{upmagic}_{\text{neighboring}}(11, 12) \\
\text{cone}(c1) & \\
\text{radius1}(c1, 0) & \\
\text{radius2}(c1, 20) & \\
\text{cylinder}(\text{cyl1}) & \\
\end{align*}
\]
Adding the new fact \textit{neighboring(cyl1, c1)} will derive \textit{up_magic_neighboring(cyl1, c1)}, which then initiates the derivation of \textit{magic_startpoint}^b(c1) and \textit{startpoint}^b(c1) which finally leads to the derivation of \textit{inconsistent} as a consequence of this update operation.

6 Conclusion

We have presented a consequence-finding approach that has been developed for the abstraction phase of a process planning system. The theory is the set of rules defining workpiece features and the initial facts are the facts describing the workpiece [Boley \textit{et al.}, 1993]. The approach extends the Generalized Magic Sets rewriting approach of deductive databases by an \textit{up} propagation in addition to the usual \textit{down} propagation. Thus, it has been investigated how the inference for query answering can be embedded into a complex problem-solving process. Because of the set-oriented reasoning strategy it is efficient, in particular if the facts reside on a database. This shows that declarative knowledge representation can be applied to real-world problems.

The consequence-finding transformation is an example of our knowledge compilation paradigm. Instead of having its own interpreter for each problem solving inference, we prefer a transformation approach, where a knowledge base – described in a declarative representation formalism – is specialized for a particular task. The rewritten knowledge base can be interpreted by a “general-purpose” reasoning system. Thus, we have the advantage that we can reduce the number of special-purpose inference engines. This is especially useful in a hybrid representation system. If larger the number of interpreters the greater would be the effort for integrating them into the system, because the interpreters have to cooperate to solve the overall problem. Investigating the opportunities of knowledge compilation for an application in a technical environment has been the objective of the development of the hybrid knowledge representation and compilation laboratory CoLAB.

References

DFKI Publikationen

Die Berichte werden, wenn nicht anders gekennzeichnet, kostenlos abgegeben.

DFKI Research Reports

RR-92-60
Karl Schlechtia: Defaults, Preorder Semantics and Circumscription
19 pages

RR-93-01
Bernhard Hollunder:
An Alternative Proof Method for Possibilistic Logic and its Application to Terminological Logics
25 pages

RR-93-02
Wolfgang Wahlster, Elisabeth André, Wolfgang Finkler, Hans-Jürgen Profiřich, Thomas Rist:
Plan-based Integration of Natural Language and Graphics Generation
50 pages

RR-93-03
Franz Baader, Berhard Hollunder, Bernhard Nebel, Hans-Jürgen Profiřich, Enrico Franconi:
An Empirical Analysis of Optimization Techniques for Terminological Representation Systems
28 pages

RR-93-04
Christoph Klauck, Johannes Schwageriet:
GGD: Graph Grammar Developer for features in CAD/CAM
13 pages

RR-93-05
Franz Baader, Klaus Schulz:
Combination Techniques and Decision Problems for Disunification
29 pages

RR-93-06
Hans-Jürgen Bürckers, Bernhard Hollunder, Armin Laux:
On Skolemization in Constrained Logics
40 pages

RR-93-07
Hans-Jürgen Bürckers, Bernhard Hollunder, Armin Laux:
Concept Logics with Function Symbols
36 pages

DFKI Publications

The following DFKI publications or the list of all published papers so far are obtainable from the above address or via anonymous ftp from ftp.dffi.uni-kl.de (131.246.241.100) under pub/Publications.

The reports are distributed free of charge except if otherwise indicated.

RR-93-08
Harold Boley, Philipp Hanschke, Knut Hinkelmann, Manfred Meyer: COLAB: A Hybrid Knowledge Representation and Compilation Laboratory
64 pages

RR-93-09
Philipp Hanschke, Jörg Würtz:
Satisfiability of the Smallest Binary Program
8 pages

RR-93-10
Martin Buchheit, Francesco M. Donini, Andrea Schaefer:
Decidable Reasoning in Terminological Knowledge Representation Systems
35 pages

RR-93-11
Bernhard Nebel, Hans-Juergen Buerckert:
Reasoning about Temporal Relations: A Maximal Tractable Subclass of Allen's Interval Algebra
28 pages

RR-93-12
Pierre Sablayrolles: A Two-Level Semantics for French Expressions of Motion
51 pages

RR-93-13
Franz Baader, Karl Schlechtia:
A Semantics for Open Normal Defaults via a Modified Preferential Approach
25 pages

RR-93-14
Joachim Niehren, Andreas Podelski, Ralf Treinen:
Equational and Membership Constraints for Infinite Trees
33 pages

RR-93-15
Frank Berger, Thomas Fehlre, Kristof Klöckner, Volker Schöll, Markus A. Thies, Wolfgang Wahlster, PLUS - Plan-based User Support
Final Project Report
33 pages
RR-93-16
Gert Smolka, Martin Henz, Jörg Würz: Object-Oriented Concurrent Constraint Programming in Oz
17 pages

RR-93-17
Rolf Backofen:
Regular Path Expressions in Feature Logic
37 pages

RR-93-18
Klaus Schild: Terminological Cycles and the Propositional μ-Calculus
32 pages

RR-93-20
Franz Baader, Bernhard Hollunder:
Embedding Defaults into Terminological Knowledge Representation Formalisms
34 pages

RR-93-22
Manfred Meyer, Jörg Müller:
Weak Looking-Ahead and its Application in Computer-Aided Process Planning
17 pages

RR-93-23
Andreas Dengel, Oumar Lutzy:
Comparative Study of Connectionist Simulators
20 pages

RR-93-24
Rainer Hoch, Andreas Dengel:
Document Highlighting — Message Classification in Printed Business Letters
17 pages

RR-93-25
Klaus Fischer, Norbert Kuhn: A DAI Approach to Modeling the Transportation Domain
93 pages

RR-93-26
Jörg P. Müller, Markus Pischel: The Agent Architecture InteRRaP: Concept and Application
99 pages

RR-93-27
Hans-Ulrich Krieger:
Derivation Without Lexical Rules
33 pages

RR-93-28
Hans-Ulrich Krieger, John Nerbonne, Hannes Pirker: Feature-Based Allomorphy
8 pages

RR-93-29
Armin Laux: Representing Belief in Multi-Agent Worlds via Terminological Logics
35 pages

RR-93-30
Stephen P. Spackman, Elizabeth A. Hinkelmann:
Corporate Agents
14 pages

RR-93-31
Elizabeth A. Hinkelmann, Stephen P. Spackman:
Abductive Speech Act Recognition, Corporate Agents and the COSMA System
34 pages

RR-93-32
David R. Traum, Elizabeth A. Hinkelmann:
Conversation Acts in Task-Oriented Spoken Dialogue
28 pages

RR-93-33
Boris Nebel, Jana Koehler:
Plan Reuse versus Plan Generation: A Theoretical and Empirical Analysis
33 pages

RR-93-34
Wolfgang Wahlster:
Verbmobil Translation of Face-To-Face Dialogs
10 pages

RR-93-35
Harold Boley, François Bry, Ulrich Geske (Eds.):
Neuere Entwicklungen der deklarativen KI-Programmierung — Proceedings
150 Seiten
Note: This document is available only for a nominal charge of 25 DM (or 15 US$).

RR-93-36
Michael M. Richter, Bernd Bachmann, Ansgar Bernardi, Christoph Klauck, Ralf Legleriner, Gabriele Schmidt: Von IBA bis IMCOD: Expertensysteme im CIM-Umfeld
13 Seiten

RR-93-38
Stephan Baumann: Document Recognition of Printed Scores and Transformation into MIDI
24 pages

RR-93-40
Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, Werner Nutt, Andrea Schaerf:
Queries, Rules and Definitions as Epistemic Statements in Concept Languages
23 pages

RR-93-41
Winfried H. Graf: LAYLAB: A Constraint-Based Layout Manager for Multimedia Presentations
9 pages

RR-93-42
Hubert Comon, Ralf Treinen:
The First-Order Theory of Lexicographic Path Orderings is Undecidable
9 pages

RR-93-43
M. Bauer, G. Paul: Logic-based Plan Recognition for Intelligent Help Systems
15 pages

RR-93-44
Martin Buchheit, Manfred A. Jeusfeld, Werner Nutt, Martin Staudt: Subsumption between Queries to Object-Oriented Databases
36 pages
RR-93-45
Rainer Hoch: On Virtual Partitioning of Large Dictionaries for Contextual Post-Processing to Improve Character Recognition
21 pages

RR-93-46
Philipp Hanschke: A Declarative Integration of Terminological, Constraint-based, Data-driven, and Goal-directed Reasoning
81 pages

RR-93-48
Franz Baader, Martin Buchheit, Bernhard Hollunder: Cardinality Restrictions on Concepts
20 pages

RR-94-01
Elisabeth André, Thomas Rist:
Multimedia Presentations: The Support of Passive and Active Viewing
15 pages

RR-94-02
Elisabeth André, Thomas Rist:
Von Textgeneratoren zu Intellimedia-Präsentationssystemen
22 pages

RR-94-03
Gert Smolka:
A Calculus for Higher-Order Concurrent Constraint Programming with Deep Guards
34 pages

RR-94-05
Franz Schmalhofer, J.Stuart Aitken, Lyle E. Bourne jr.:
Beyond the Knowledge Level: Descriptions of Rational Behavior for Sharing and Reuse
81 pages

RR-94-07
Harold Boley: Finite Domains and Exclusions as First-Class Citizens
25 pages

RR-94-08
Otto Kühn, Björn Höfling: Conserving Corporate Knowledge for Crankshaft Design
17 pages

RR-94-10
Knut Hinkelmann, Helge Hinte:
Computing Cost Estimates for Proof Strategies
22 pages

RR-94-11
Knut Hinkelmann:
A Consequence Finding Approach for Feature Recognition in CAPP
18 pages

RR-94-12
Hubert Conan, Ralf Treinen:
Ordering Constraints on Trees
34 pages

DFKI Technical Memos

TM-92-01
Lüjian Zhang: Entwurf und Implementierung eines Compilers zur Transformation von Werkstückrepräsentationen
34 Seiten

TM-92-02
Achim Schupeta: Organizing Communication and Introspection in a Multi-Agent Blocksworld
32 pages

TM-92-03
Mona Singh:
A Cognitive Analysis of Event Structure
21 pages

TM-92-04
Jürgen Müller, Jörg Müller, Markus Pischel, Ralf Scheidhauer:
On the Representation of Temporal Knowledge
61 pages

TM-92-05
Franz Schmalhofer, Christoph Globig, Jörg Thoben:
The refitting of plans by a human expert
10 pages

TM-92-06
Otto Kühn, Franz Schmalhofer: Hierarchical skeletal plan refinement: Task- and inference structures
14 pages

TM-92-08
Anne Kilger: Realization of Tree Adjoining Grammars with Unification
27 pages

TM-93-01
Otto Kühn, Andreas Birk: Reconstructive Integrated Explanation of Late Production Plans
20 pages

TM-93-02
Pierre Sablayrolles, Achim Schupeta:
Conflict Resolving Negotiation for COoperative Schedule Management
21 pages

TM-93-03
Harold Boley, Ulrich Buhrmann, Christof Kremer:
Konzeption einer deklarativen Wissensbasis über recyclingrelevante Materialien
11 pages

TM-93-04
Hans-Günter Hein: Propagation Techniques in WAM-based Architectures — The FIDO-III Approach
105 pages

TM-93-05
Michael Sintek: Indexing PROLOG Procedures into DAGs by Heuristic Classification
64 pages
D-93-01
Philipp Hanschke, Thom Frühwirth: Terminological Reasoning with Constraint Handling Rules
12 pages

D-93-02
Gabriele Schmidt, Frank Peters, Gernod Laufköter: User Manual of COKAM+
23 pages

D-93-03
Stephan Basemann, Karin Harbusch (Eds.): DFKI Workshop on Natural Language Systems: Reusability and Modularity - Proceedings
74 pages

D-93-04
DFKI Wissenschaftlich-Technischer Jahresbericht 1992
194 Seiten

D-93-05
Elisabeth André, Winfried Graf, Jochen Heinsohn, Bernhard Nebel, Hans-Jürgen Profittich, Thomas Rist, Wolfgang Wahlster: PPP: Personalized Plan-Based Presenter
70 pages

D-93-06
Jürgen Müller (Hrsg.): Beiträge zum Gründungsworkshop der Fachgruppe Verteilte Künstliche Intelligenz, Saarbrücken, 29.-30. April 1993
225 Seiten
Note: This document is available only for a nominal charge of 25 DM (or 15 US-$).

D-93-07
Klaus-Peter Gores, Rainer Bleisinger: Ein erwartungsgesteuerter Koordinator zur partiellten Textanalyse
53 Seiten

D-93-08
Thomas Kieninger, Rainer Hoch: Ein Generator mit Anfragesystem für strukturierte Wörterbücher zur Unterstützung von Texterkennung und Textanalyse
125 Seiten

D-93-09
35 pages

D-93-10
Elizabeth Hinkelmann, Markus Vonerden, Christoph Jung: Natural Language Software Registry (Second Edition)
174 pages

D-93-11
Knut Hinkelmann, Armin Laux (Eds.): DFKI Workshop on Knowledge Representation Techniques — Proceedings
88 pages

D-93-12
Harold Boley, Klaus Elsbernd, Michael Herfort, Michael Sintek, Werner Stein: RELFUN Guide: Programming with Relations and Functions Made Easy
86 pages

D-93-14
264 pages
Note: This document is available only for a nominal charge of 25 DM (or 15 US-$).

D-93-15
Robert Laux: Untersuchung maschinellem Lernverfahren und heuristischer Methoden im Hinblick auf deren Kombination zur Unterstützung eines Chart-Parsers
86 Seiten

D-93-16
Bernd Bachmann, Ansgar Bernardi, Christoph Klauck, Gabriele Schmidt: Design & KI
74 Seiten

D-93-20
Bernhard Herbig: Eine homogene Implementierungsebene für einen hybriden Wissensrepräsentationsformalismus
97 Seiten

D-93-21
Dennis Drolinger: Intelligentes Backtracking in Inferenzsystemen am Beispiel Terminologischer Logiken
53 Seiten

D-93-22
Andreas Abecker: Implementierung graphischer Benutzeroberflächen mit Tcl/Tk und Common Lisp
44 Seiten

D-93-24
Brigitte Krenn, Martin Volz: Dito-Datenbank: Daten-dokumentation zu Funktionsverbgefügen und Relativsätzen
66 Seiten

D-93-25
Hans-Jürgen Bürckert, Werner Nutt (Eds.): Modeling Epistemic Propositions
118 pages
Note: This document is available only for a nominal charge of 25 DM (or 15 US-$).

D-93-26
Frank Peters: Unterstützung des Experten bei der Formalisierung von Textwissen
INFOCOM - Eine interaktive Formalisierungskomponente
58 Seiten

D-94-01
Josua Boon (Ed.): DFKI-Publications: The First Four Years 1990 - 1993
75 pages