Please use this identifier to cite or link to this item:
Volltext verfügbar? / Dokumentlieferung
doi:10.22028/D291-46597 | Title: | Business Process Deviation Prediction: Predicting Non-Conforming Process Behavior |
| Author(s): | Grohs, Michael Pfeiffer, Peter Rehse, Jana-Rebecca |
| Editor(s): | Munoz-Gama, Jorge Rinderle-Ma, Stefani Senderovich, Arik |
| Language: | English |
| Title: | 2023 5th International Conference on Process Mining : ICPM 2021 |
| Pages: | 113-120 |
| Publisher/Platform: | IEEE |
| Year of Publication: | 2023 |
| Place of the conference: | Rom |
| Free key words: | Training Costs Machine learning Predictive models Network architecture Inspection Encoding Process Mining Deviation Prediction Predictive Process Monitoring Conformance Checking |
| DDC notations: | 004 Computer science, internet |
| Publikation type: | Conference Paper |
| DOI of the first publication: | 10.1109/ICPM60904.2023.10271994 |
| URL of the first publication: | https://doi.org/10.1109/ICPM60904.2023.10271994 |
| Link to this record: | urn:nbn:de:bsz:291--ds-465974 hdl:20.500.11880/41053 http://dx.doi.org/10.22028/D291-46597 |
| ISBN: | 979-8-3503-5839-1 |
| Date of registration: | 2-Feb-2026 |
| Faculty: | HW - Fakultät für Empirische Humanwissenschaften und Wirtschaftswissenschaft |
| Department: | HW - Wirtschaftswissenschaft |
| Professorship: | HW - Prof. Dr. Peter Loos |
| Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
There are no files associated with this item.
Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.

