Please use this identifier to cite or link to this item: doi:10.22028/D291-46597
Volltext verfügbar? / Dokumentlieferung
Title: Business Process Deviation Prediction: Predicting Non-Conforming Process Behavior
Author(s): Grohs, Michael
Pfeiffer, Peter
Rehse, Jana-Rebecca
Editor(s): Munoz-Gama, Jorge
Rinderle-Ma, Stefani
Senderovich, Arik
Language: English
Title: 2023 5th International Conference on Process Mining : ICPM 2021
Pages: 113-120
Publisher/Platform: IEEE
Year of Publication: 2023
Place of the conference: Rom
Free key words: Training
Costs
Machine learning
Predictive models
Network architecture
Inspection
Encoding
Process Mining
Deviation Prediction
Predictive Process Monitoring
Conformance Checking
DDC notations: 004 Computer science, internet
Publikation type: Conference Paper
DOI of the first publication: 10.1109/ICPM60904.2023.10271994
URL of the first publication: https://doi.org/10.1109/ICPM60904.2023.10271994
Link to this record: urn:nbn:de:bsz:291--ds-465974
hdl:20.500.11880/41053
http://dx.doi.org/10.22028/D291-46597
ISBN: 979-8-3503-5839-1
Date of registration: 2-Feb-2026
Faculty: HW - Fakultät für Empirische Humanwissenschaften und Wirtschaftswissenschaft
Department: HW - Wirtschaftswissenschaft
Professorship: HW - Prof. Dr. Peter Loos
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
There are no files associated with this item.


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.