Please use this identifier to cite or link to this item: doi:10.22028/D291-46699
Volltext verfügbar? / Dokumentlieferung
Title: Deep Neural Network Representation for Explainable Machine Learning Algorithms: A Method for Hardware Acceleration
Author(s): Schauer, Julian
Goodarzi, Payman
Schütze, Andreas
Schneider, Tizian
Language: English
Title: IEEE Instrumentation and Measurement Technology Conference
Publisher/Platform: IEEE
Year of Publication: 2024
Free key words: edge computing
hardware acceleration
machine learning
neural network
DDC notations: 500 Science
Publikation type: Conference Paper
DOI of the first publication: 10.1109/I2MTC60896.2024.10560978
URL of the first publication: https://doi.org/10.1109/I2MTC60896.2024.10560978
Link to this record: urn:nbn:de:bsz:291--ds-466994
hdl:20.500.11880/40942
http://dx.doi.org/10.22028/D291-46699
ISBN: 979-8-3503-8090-3
Date of registration: 8-Jan-2026
Faculty: NT - Naturwissenschaftlich- Technische Fakultät
Department: NT - Systems Engineering
Professorship: NT - Prof. Dr. Andreas Schütze
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
There are no files associated with this item.


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.