Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: -kein DOI; bitte anderen URI nutzen
Titel: Feature Extractor for Damage Localization on Composite-Overwrapped Pressure Vessel Based on Signal Similarity Using Ultrasonic Guided Waves
VerfasserIn: El Moutaouakil, Houssam
Heimann, Jan
Lozano, Daniel
Memmolo, Vittorio
Schütze, Andreas
Sprache: Englisch
Titel: Applied Sciences
Bandnummer: 15
Heft: 17
Verlag/Plattform: MDPI
Erscheinungsjahr: 2025
Freie Schlagwörter: ultrasonic guided waves
composite-overwrapped pressure vessel
interpretable machine learning
structural health monitoring
damage localization
critical infrastructure
hydrogen
non-destructive testing
DDC-Sachgruppe: 500 Naturwissenschaften
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Hydrogen is one of the future green energy sources that could resolve issues related to fossil fuels. The widespread use of hydrogen can be enabled by composite-overwrapped pressure vessels for storage. It offers advantages due to its low weight and improved mechanical performance. However, the safe storage of hydrogen requires continuous monitoring. Combining ultrasonic guided waves with interpretable machine learning provides a powerful tool for structural health monitoring. In this study, we developed a feature extraction approach based on a similarity method that enables interpretability in the proposed machine learning model for damage detection and localization in pressure vessels. Furthermore, a systematic optimization was performed to explore and tune the model’s parameters. This resulting model provides accurate damage localization and is capable of detecting and localizing damage on hydrogen pressure vessels with an average localization error of 2 cm and a classification accuracy of 96.5% when using quantized classification. In contrast, binarized classification yields a higher accuracy of 99.5%, but with a larger localization error of 6 cm.
DOI der Erstveröffentlichung: 10.3390/app15179288
URL der Erstveröffentlichung: https://doi.org/10.3390/app15179288
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-462773
hdl:20.500.11880/40566
ISSN: 2076-3417
Datum des Eintrags: 15-Sep-2025
Fakultät: NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: NT - Systems Engineering
Professur: NT - Prof. Dr. Andreas Schütze
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
applsci-15-09288.pdf4,94 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons