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Abstract

Hydrogen is one of the future green energy sources that could resolve issues related to
fossil fuels. The widespread use of hydrogen can be enabled by composite-overwrapped
pressure vessels for storage. It offers advantages due to its low weight and improved
mechanical performance. However, the safe storage of hydrogen requires continuous
monitoring. Combining ultrasonic guided waves with interpretable machine learning
provides a powerful tool for structural health monitoring. In this study, we developed a
feature extraction approach based on a similarity method that enables interpretability in
the proposed machine learning model for damage detection and localization in pressure
vessels. Furthermore, a systematic optimization was performed to explore and tune the
model’s parameters. This resulting model provides accurate damage localization and is
capable of detecting and localizing damage on hydrogen pressure vessels with an average
localization error of 2 cm and a classification accuracy of 96.5% when using quantized
classification. In contrast, binarized classification yields a higher accuracy of 99.5%, but
with a larger localization error of 6 cm.

Keywords: ultrasonic guided waves; composite-overwrapped pressure vessel; interpretable
machine learning; structural health monitoring; damage localization; critical infrastructure;
hydrogen; non-destructive testing

1. Introduction

To ensure the safe storage of hydrogen in composite-overwrapped pressure vessels
(COPVs) [1], the development of structural health monitoring (SHM) technologies is essen-
tial. These technologies help ensure the vessel remains in proper conditions by detecting
damage that may occur during operation. Ultrasonic guided waves (UGWs) are a non-
destructive testing method employed to inspect COPVs using the pitch—catch procedure [2].
It offers the advantage of covering a large area by exploiting the reflection and absorption
properties of the ultrasonic waves (Figure 1) [3]. In this procedure, ultrasonic sensors are
piezoelectric transducers that serve as transmitters when emitting UGW signals and as
receivers when capturing the propagated waves (Figure 2). However, signal interpretation
poses a challenge in ensuring accurate detection with minimal false alarms.
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Figure 1. Comparison of two types of ultrasonic damage inspection. The yellow region illustrates
the propagation area of the UGWs: (a) inspection based on conventional ultrasound can only detect
damage directly beneath the sensor as it lacks the waveguide structure necessary for effective wave
propagation; (b) inspection based on guided wave ultrasound.
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Figure 2. UGW signals: (a) plot of the normalized pitch signal; (b) plot of the catch signal sent by
transducer Ty recorded by receiver T4, where each time sample corresponds to 0.48 us.

Several approaches based on machine learning (ML) have been developed to evaluate
the acquired signals and detect damage. A strategy that elaborates a feature extractor based
on signal difference was previously proposed. However, this signal difference approach is
restrictive and can be generalized to overcome potential overfitting [4]. Deep learning-based
approaches tend to overfit and are challenging to interpret, which is crucial when inspecting
critical infrastructures [5]. Furthermore, software implementation errors are more likely to
remain undetected and can be difficult to identify, as deep learning implementations are
based on complex software. This is also the reason why security vulnerabilities present
in the frameworks used for development, such as system compromise, the evasion of
detection, and denial-of-service risks, are implicitly inherited by the developers [6]. On
the other hand, training deep learning models for small datasets, i.e., those with a limited
number of examples, allows for building only simple models that lack validation under
operational conditions [7].

Another approach to investigating UGW and detecting damage is the Reconstruction
Algorithm for Probabilistic Inspection (RAPID), a robust probabilistic imaging approach [8].
RAPID estimates the probability of damage between a transducer and a receiver by calcu-
lating the Pearson correlation between the measured signal and a baseline signal recorded
under damage-free conditions [9]. A lower correlation indicates a higher likelihood of dam-
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age. A tomogram is generated by aggregating spotlights with their intensities determined
by the calculated damage probabilities. However, this approach has limited precision due
to the restricted resolution of the tomogram in identifying damage locations. This limitation
stems from the simplification of plotting the spotlight with a constant ellipsoidal diameter
ratio [10].

In this work, we develop and investigate an interpretable ML algorithm based on
signal similarity as a feature extractor [11]. Within this approach, UGW signals of a COPV
in an undamaged state are compared to UGW signals in a damaged state. The comparison
involves segmenting the signals into equal-sized intervals and then applying a similarity
measure, such as cross-correlation, to each corresponding interval to extract features
that describe the presence of damage. The extracted features are labeled with quantized
distances of the damage positions to the corresponding pitch—catch sensor pairs. A cutoff is
applied to distances belonging to sensor pairs that are less influenced by the present damage.
Although this approach has been proposed in a previous study [12], many questions remain
open regarding the selection of adequate operational and hyperparameters, such as the
optimal operational frequency, signal segmentation interval, applied quantization, and
cutoff value. Furthermore, when validating using Leave-One-Group-Out Cross-Validation
(LOGO-CV) [13], the test set is created by leaving out one pair of sensors across all damage
configurations, which does not represent a practical scenario in real-world applications [12].

2. Materials and Methods

In this section, we present the design of the experimental campaign used to acquire the
UGW signals employed for developing the machine learning algorithm. We then discuss
the developed algorithm and the steps taken to achieve these results.

2.1. Design of Experiments

In the first development step, ultrasonic signal data need to be acquired from COPVs
with reversible damage, simulated by weights glued to the surface of the vessel. For our
study, an experiment was designed by using a COPV (NPROXX) with a length of 1670 mm
and a perimeter of 352 mm that can withstand pressures up to 700 bar (Figure 3a). It is
equipped with a network of 15 piezoelectric transducers (PI Ceramics, DuraAct patches of
type P 876K025) (Figure 3b) [14]. These piezoelectric sensors function as transmitters and
receivers, as required for the pitch—catch procedure.

Reversible Damage

Transducers

(b)

Figure 3. Pictures describing the experiment setup: (a) COPV and the data acquisition system;
(b) glued piezoelectric transducers and the reversible damage.

The 15 employed sensor transducers result in 210 pair combinations. For symmetry
reasons and due to the transmission direction, only half of the combinations consisting
of 105 pairs are finally considered (15 Transducers x 13-Transducers—1 — 105) This helps
reduce the amount of acquired data, as sensor path T;R; is covered by sensor path R;T},
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where i, j € {1, 15} indicate the piezoelectric sensors. The sensor arrangement is based on
previous work that investigated a carbon fiber-reinforced plastic plate [15]. Data acquisition
is performed by connecting the sensor to a Vantage 64 LF acquisition system (Verasonic,
Kirkland, WA, USA). The experiment begins with the measurement of baseline data at
a constant temperature of 20 °C. The baseline data are necessary to detect any deviation
from the undamaged state [16]. In the next step, reversible damage was introduced by
gluing metal blocks of two different weights (330 g and 513 g) with a rectangular contact
area of 24 cm? onto the COPV surface. This method is widely used for the non-destructive
testing of COPVs as the attached weights mimic alterations in surface stiffness and acoustic
impedance that would similarly result from real damage. Each weight was tested separately
at three different positions, D1, Dy, and D3. Furthermore, two combinations of both weights
were also tested on the COPV. Table 1 lists the eight measurements conducted using
reversible damage, representing eight damage configurations.

Table 1. Damage configurations of the eight conducted measurements with the weights used to add
reversible damage. The green dots mark the 513 g weight, while the blue dots mark the 330 g weight.
The lighter red dots represent the transducers located above the vessel, while the darker red dots

represent the transducers on the opposite side of the vessel.
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A total of 840 signals (8 experiments x 105 pairs) representing various cases of damage
were measured, in addition to 105 baseline signals. For the experiment, we used a frequency
of 130 kHz, which is suitable for detecting damage of the size introduced in this study. This
can be verified based on wavelength A under the approximate ultrasound propagation
speed, ¢, of 3042 m/s in the transverse direction of 90° in the investigated composite fiber
material [17]. The minimal detectable damage size, S,,;;,, is calculated using Formula (1)
and yields a minimal detection size of approximately 6 mm at a frequency of 130 kHz [18].
The chosen frequency, as indicated by the dispersion curve for the vessel material, falls
within a range where the A0 mode exhibits low group velocity and a dominant out-of-plane
displacement. This makes it highly sensitive to local stiffness and mass changes, such as
those simulated by the glued-on weights in this experiment, and similar to how it interacts
with delaminations in composite materials [19,20].

Spin = A/4 = c/af 1)

2.2. Signal Evaluation Methods

This study aims to develop and optimize an interpretable ML algorithm able to detect
and localize damage on a COPV. The approach is based on feature extraction, feature
selection, and classification steps (FESC) [21]. This procedure delivers an interpretable
result, overcoming the drawbacks of black-box models such as deep learning, which are
not suitable for deployment in monitoring critical infrastructures.

Before feature extraction, signal preprocessing is applied, which involves windowing
to isolate the parts of the signal that contain information related to the damage (Figure 4). To
determine the optimal windowing interval, windows with varying start and end data points
were evaluated, and the configuration that achieved the highest accuracy was selected.
The accuracy is calculated by comparing the predicted scores with the target variable. The
length of the target variable then normalizes the number of predictions. The start values
range from 10 to 500 in steps of 10 (i.e., 10, 20, . . ., 500), while the end points are obtained by
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adding values from interval 5 to 1000 (in steps of 10) to each start value. Following this, the
feature extraction step, which is based on the signal similarity approach, is performed [12].
This approach involves splitting the signal time series into equal intervals, which are then
compared to the corresponding intervals of a baseline time series using a similarity measure
based on the normalized root mean square deviation (NRMSD) [22]. This method has been
shown to provide the highest prediction accuracy and the lowest localization error [12].
In the segmentation step, the smallest segment length consisting of two data points was
chosen to capture all signal changes. Further investigation into longer segment lengths will
be conducted in future work. In the next step, each segment interval is compared with the
corresponding interval from the baseline signal using the NRMSD similarity measure to
calculate physics-informed features that enable interpretability. The approach assumes that
lower similarity corresponds to a higher likelihood of damage. A value of 1 indicates the
lowest similarity (i.e., the highest likelihood of damage), while a value of 0 indicates the
highest similarity (i.e., no damage).
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Figure 4. The difference signal of sensor pairs T; to Tg, obtained by subtracting the baseline signal
from the corresponding signal affected by damage. This results in a residual signal that indicates
the presence of damage. The earliest start and latest end data points of the window are chosen to
generously cover the portion of the signal influenced by the damage.

Figure 5 shows an example result of the NRMSD similarity measure, as defined in
Formula (2), applied to the full signal length. Additionally, it illustrates the segmentation
as divided into 100 segments, each corresponding to a distinct feature.

. 2
\/E;*L(i])*pr] ((SB)]‘_(SD)]‘)
NRMSD; = L

max(Sp) — min(Sp)

@)

i: Segment index

j: Sample index within segment interval
L: The length of the segmented signal
Sp: Baseline signal

Sp: Damage-affected signal
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Figure 5. Comparison between baseline in blue and signal affected by damage in red color for UGW
propagating between transducer T; and receiver Tg. Segmentation interval of 100 that corresponds to
51 samples is shown by vertical discontinuous lines. Calculated similarity values between baseline
and damage signals based on NRMSD are shown correspondingly for each segment in magenta color.
Similarity measure of 1 indicates lower similarity and hence the presence of a damage.

The next step involves standardizing the features because classification is later per-
formed using Support Vector Machines (SVMs), which, like most classifiers, are sensitive
to feature scaling. Finally, we apply an SVM for classification based on MATLAB's stan-
dard implementation (version R2022b, The MathWorks, Inc., Natick, MA, USA), using the
extracted features calculated according to Formula (2). This implementation employs a
radial basis kernel, with the C parameter set to 1000, and an auto-selected kernel scale
gamma determined using the subsampling heuristic procedure [23,24]. The classifier is
trained on binary classes: class 1 refers to sensor transducer pairs that are significantly
affected by damage, while class 0 represents unaffected pairs. In the first step, a diameter
ratio is calculated based on the ellipsoids formed by ultrasonic wave propagation between
transmitters and receivers that intersect at the damage location [25]. The diameter ratio is
defined in Formula (3).

Prr  _ \/(iT —ig)? + (jr — jr)* 3)

Ry =
Pro+ Fro \/(iT —ip)’ + (jr — jp)* + \/(iR —ip)®+ (jr —jp)°

Rg: The diameter ratio of the ellipsoid starting at transducer T and arriving at receiver
R over damage D.

Prr: The direct path of the ultrasonic wave starting at transducer T and arriving at
receiver R.

Prp: Ultrasonic wave propagation starting at transducer T and arriving at damage D.

Prp: Ultrasonic wave propagation reflected by damage D and arriving at receiver R.

(i1, jT): Cartesian coordinates of the transducer position.

(ir, jr): Cartesian coordinates of the receiver position.
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(ip, jp): Cartesian coordinates of the damage position.

A diameter ratio close to one indicates that the damage is along the direct path
between the transducer and receiver pair. Conversely, a ratio near zero suggests the
damage is far from the direct path and will have little or no impact on the signals of that
transducer-receiver pair. Figure 6 illustrates the calculation of the diameter ratio using
triangulation [25]. During this step, we apply a cutoff of 0.9 to the diameter ratio, as
suggested in the RAPID implementation [8], creating an interest interval of [0.9, 1]. Only
damage with a diameter ratio within this range is considered to affect the corresponding
sensor pair. Then, a threshold within this interval is chosen to optimize model accuracy.
The binarization process is shown in Formula (4).

]
Damage (ip.ip) Receiver (ir.jr)
Pro T2
Pro
Ptr
T1® $ 13

Transducer (iT,j1)

Ny
>

Figure 6. Triangulation for calculating the diameter ratios of damage D between transducer—receiver
pairs. The red dots represent the transducers, while the blue dots represent the damage location.

>
RB _ 11 R@ - Rtl’l (4)
0,Rg < Ry,

Rp: The binarized diameter ratio used for classification.

Rg: The diameter ratio.

Ry, The diameter ratio threshold that lies within the interval of interest [0.9, 1].

To enhance the method’s robustness, the sensor transducer pairs are divided into three
groups [26]. The first group includes pairs located within the same sensor ring. The second
group consists of pairs formed by transducers from neighboring rings. The third group
consists of pairs where transmitters are located on the upper ring and receivers on the lower
ring. In this study, only transducer pairs from the second group are used, as pairs from the
first group were unaffected by the damage introduced and were consistently labeled as 0.
Pairs from the third group are also excluded because damage is more effectively detected
by the second group (Figure 7).
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Figure 7. Transducer pairs are divided into three groups based on their positions. The orange
arrows indicate example sensor pairs belonging to each group, shown below the flattened view of the
pressure vessel. Red dots represent the transducers, while blue dots indicate the locations of damage.

Following the described processing pipeline (Figure 8), we benchmarked 2300 al-
gorithms by testing all windowing configurations. The results are validated using the
Leave-One-Group-Out Cross-Validation (LOGO-CV). This validation method combines the
benefits of standard k-fold CV with increased robustness by improving the independence
between training and test data during the grouping process [13]. In LOGO-CV, groups are
defined based on the damage configurations listed in Table 1, with sensor pairs grouped
by each experimental setup. Since the experiment includes 8 damage configurations, this
results in a total of 8 groups. In each validation cycle, one group is used as the test dataset,
while the remaining sensor pairs form the training dataset.

Pre-Processing Feature Extraction Further Processing Classification
. . Normalized Root Mean ] :
> Signal Windowing —> SqUake Deviation —> Standardization —> SVM Classifier
Ultrasonic Data
Labeling

> Diameter Ratio Used for
Training

Figure 8. Processing pipeline for damage classification based on signal windowing, feature extrac-
tion, standardization, and finally, SVM classification. The arrows represent the direction of the

data processing.

The reconstruction of the damage location using the predicted binarized diameter
ratios, as defined in Formula (4), is performed by mapping the classes representing sensor
pairs affected by damage to their original diameter ratio thresholds. These thresholds
are expanded by a small delta value of 0.01 to include damage that lies precisely on the
perimeter of the ellipsoid, which represents the region covered by ultrasonic wave propa-
gation between the transducer and receiver pair under investigation. The corresponding
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ellipsoidal regions are then plotted, and their superposition results in local maxima that
indicate the reconstructed damage locations. Formula (5) describes the process of iden-
tifying the damage location by superimposing these ellipsoidal regions. Threshold Dy,
is set such that the area around the local maxima is at least two-thirds higher than the
lowest value in the tomogram. This ensures sufficient separation from other non-significant
local maxima. Therefore, Dy, is set to 0.667 as all values are normalized to a range of
0 to 1. A more accurate threshold will be investigated in future work. Finally, centroid

C of the highlighted area is calculated [27], and its coordinates represent the predicted
damage location.

T=Rg+A, A=0.01
n
A= (27}) > Dy,
xmasx_l
¥= [ dAxdx | A (5)
Ximin
Ymax
y= [ dAxdy | A
Ymin
C= &y

Rp: The binarized diameter ratio as defined in Formula (4).

T: The tomogram representing a single ellipsoidal region associated with the investi-
gated sensor pair.

Dyj,: The damage threshold set to two-thirds (0.667) of the normalized scale.

A : The area of the local maximum where the predicted damage is located.
: The sensor pair under investigation.
n : The total number of sensor pairs investigated.

X : The x-coordinate of the centroid of the damage location.

¥y : The y-coordinate of the centroid of the damage location.

C : The centroid of area A, representing the location of the predicted damage.

Plotting all possible ellipsoidal regions results in the tomogram shown in Figure 9.
For this visualization, diameter ratio threshold Ry, is set to 0.97 to demonstrate that the
localization method is capable of covering the entire area of the pressure vessel under
investigation. The upper and lower regions of the vessel are not included in the scope of
this experiment; therefore, no ellipsoidal regions are expected in those areas. Additionally,
the left and right vertical regions show lower intensity compared to the central region. This
effect is due to the simplification introduced by flattening the cylindrical geometry of the
pressure vessel. This can be mitigated by mirroring the sensor transducers located on the
borders to the opposite edges. However, this adjustment is not applied in this work, as the
training data for the machine learning model only includes damage cases located in the
central region of the vessel.

v2)
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Figure 9. A visualization demonstrating the full coverage of the damage localization method. The
red dots indicate the transducers.

3. Results

3.1. Binary Classification Results
3.1.1. Windowing Selection

To determine the parameter configuration of the ML algorithm that delivers the best
accuracy, we evaluate the algorithm described in the pipeline in Figure 8 while varying
the windowing start and end data points. This results in the surface curvature shown in
Figure 10. The highest accuracy is achieved by start data point 220 and end data point 564,
which correspond to a time lapse of 81 ps to 246 ps after the pitch signal has been triggered.

3.1.2. Best Diameter Ratio Cutoff

A suitable binarization threshold, as introduced in Formula (4), must also be deter-
mined. To this end, the classification accuracy of the algorithm, using the windowing
strategy described in the previous section, is evaluated for thresholds ranging from 0.90
to 1.00 in increments of 0.01. The results indicate that a threshold value near the center
of this interval yields the highest accuracy, reaching 99.50% (Table 2). This corresponds
to 398 sensor pairs out of a total of 400 being correctly classified. Among all damage
configurations, only configuration 7 achieves less than perfect accuracy. This is due to the
presence of two closely spaced damage locations, which affect the predicted diameter ratio
for reversible damage Dj3. Since D3 shares many sensor paths with D1, the proximity leads
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to overlap and interference in the signal interpretation. In this case, damage D; was more
dominant as it was simulated using the heavier weight (513 g) in contrast to the lighter
weight (330 g) used for D3 (Table 1).

Prediction Results
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Figure 10. The surface curvature showing the change in accuracy as a function of the start and end
data points.

Table 2. An evaluation of the cutoff threshold applied to the diameter ratio for binarized damage
classification. The classification accuracy for each of the 8§ damage configurations is reported for every
threshold value, along with the corresponding average accuracy.

Accuracy in %

Damage Damage Damage Damage Damage Damage Damage Damage Damage

Ratio Config1l Config2 Config3 Config4 Config5 Config6 Config7 Config8 Average
0.90 100 100 100 100 96 100 96 100 98.75
091 100 98 100 100 98 100 94 100 98.25
0.92 100 98 100 100 98 100 94 100 98.25
0.93 100 98 100 100 98 100 94 100 98.25
0.94 100 100 100 100 100 100 96 100 99.50
0.95 100 100 100 100 100 100 94 100 99.25
0.96 100 100 100 100 100 100 94 100 99.25
0.97 100 100 100 100 100 100 92 100 99.00
0.98 100 100 100 98 98 100 90 100 98.00
0.99 100 100 100 100 98 100 94 100 98.75

3.1.3. Visualization of Binarized Classification

The prediction results of the machine learning model, with the parametrization that
yields the highest classification accuracy, are visualized in Figure 11. The green plus symbol
indicates the actual damage position, while the dot in magenta marks the predicted damage
location. Damage index i, as defined in Table 1, is noted by D;, where i varies between
1 and 3. The deviation between the predicted and actual damage positions, along with
the corresponding damage configuration index, is indicated below each tomogram. This
method achieves an average localization error of 60 mm.
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T4

Damage Config 1 - Distance: 106mm

3.2. Quantized Classification Results
3.2.1. Diameter Ratio Quantization

To achieve more accurate localization, only the edge of the ellipsoid used for trian-
gulation is now considered when plotting the ellipsoidal region (Figure 6). Consequently,
Formula (4) is modified as follows to describe the ellipsoids:

(6)

Rg, Ry + Dy 2 Ry > Ry,
R = )
0, otherwise

RE: The ellipsoid used to localize damage affecting the investigated sensor pair.

Rg: The diameter ratio, as defined in Formula (3).

Ryy,: Threshold for the diameter ratio that lies within the relevant interval [0.9, 1].

Ay The parameter that defines the width of the ellipsoid edge set to 1 cm, ensuring
coverage of the area under investigation on the studied vessel.

Training the proposed machine learning algorithm must be adapted to predict the
diameter ratio for each sensor pair. To do this, a quantization of the diameter ratio is
introduced, as shown in Figure 12. The classes are defined so that the diameter ratios of
sensor pair groups fall within specific intervals, with clear separation from neighboring
classes. Consequently, ten distinct classes are identified, with the number of observations
per class indicated in brackets.

0.3

0.2

0.1

™ T2

(a)

Figure 11. Cont.
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Figure 11. Visualization of predicted damage at different locations: (a) tomogram of damage Dy;
(b) tomogram of damage D,; (c) tomogram of damage Dj3; (d) tomogram of damage D; and Ds;
(e) tomogram of damage D, and Ds.
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Figure 12. Distribution of training classes based on quantized diameter ratios.

The reconstruction of the damage location using the predicted quantized diameter
ratio is carried out based on Table 3, which reverses the quantization introduced in Figure 12.
This is achieved by remapping the predicted target variable classes, that is, the prediction
scores, to approximate the original diameter ratios, thereby ensuring coverage of the full
range of diameter ratios within the quantized interval. The corresponding ellipsoids are
then plotted, and their intersections, which result in local maxima, indicate the recovered
damage locations (Formula (5)).

Table 3. Diameter ratio quantization mapping.

Predicted Class

0 1 2 3 4 5 6 7 8 9

Ellipsoid Diameter Ratio Recovered 0 090 0925 0945 095 096 0.975 0.98 0.985  0.999

3.2.2. Results and Visualization of Quantized Classification

An evaluation of the machine learning model was conducted using a window that
started at data point 241 and ended at data point 324, as previously determined for binarized
classification (Section 3.1.1). These start and end points correspond to a time lapse of 91 us
to 131 s after the pitch signal has been triggered. When applying a damage ratio threshold
of 0.94, this parametrization results in an accuracy of 96.5%, with the lowest average
localization error of 21 mm between the actual and predicted damage locations (Table 4).
The predicted damage ratios are then used to reconstruct the damage positions, as shown
in Figure 13. The damage ratio threshold of 0.94 yields the highest accuracy and aligns with
the results obtained for binarized classification, where the same threshold also produced
optimal accuracy (Table 2).



Appl. Sci. 2025, 15,9288

16 of 20

T14 T15 T11 T12
Damage Config 1 - Distance: 7.44mm

T14 T15 T11 T12
Damage Config 6 - Distance: 2.71mm

(©)

0.9

08

03
‘ D

0.2

0.1

T4 ™5 Ty, T2
Damage Config 3 - Distance: 16.03mm

(b)

) / [
|l

T14 TS Ty, T2

Damage Config 8 - Dlstance 16.03mm
- Distance: 11.54mm

(d)

Figure 13. Visualization of the predicted damages at different locations: (a) Tomogram of damage D1;

(b) Tomogram of damage D,; (c) Tomogram of damage Ds3; (d) Tomogram of damage D; and Dj.
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Table 4. An evaluation of the cutoff threshold applied to the diameter ratio for quantized damage
classification. The classification accuracy for each of the eight damage configurations is reported for
each threshold value, along with the corresponding average accuracy.

Accuracy in %

Dﬁmgge Damage Damage Damage Damage Damage Damage Damage Damage Average Lo}g;!(i)zraitrilon

atio Config 1 Config 2 Config 3 Config 4 Config 5 Config 6 Config 7 Config 8 mm
0.90 96 100 98 92 92 96 84 88 93.75 30
091 96 100 100 98 92 98 84 94 95.00 29
0.93 94 100 100 98 92 98 84 94 95.00 26
0.94 96 100 100 98 96 100 86 96 96.50 21
0.96 94 100 98 100 96 100 86 96 96.25 23
0.97 96 100 100 98 96 100 88 98 97.00 25
0.98 96 100 100 100 98 98 88 98 97.25 20
0.99 98 100 98 100 98 98 94 98 98.00 29
0.999 100 100 100 98 98 100 94 100 98.75 66

4. Discussion

The developed algorithm shows robustness against outliers. The region where ellip-
soids intersect indicates the location of damage with the highest intensity. This approach
ensures that, even if incorrect predictions create extra intersection points, their effect on
the final damage localization is minimal because their intensities are significantly lower
than those of the actual damage area. This robustness is achieved by training the model
on quantized diameter ratios, which enables the estimation of approximate damage loca-
tions. In contrast, training with binarized diameter ratios only provides a binary indication
of whether damage exists between a specific transducer pair. Although the localization
method based on ellipsoidal regions and binarized classification results in a slightly higher
average localization error (60 mm) compared to the method using quantized classification
(21 mm), it has proven very effective for reliably assessing the general condition of the
pressure vessel and providing a reasonable estimate of damage locations.

When grouping sensor transducer pairs, pairs that lie entirely on the sensor rings
cannot be effectively trained. This is due to the lack of damage scenarios located directly on
or near these sensor rings. Therefore, future experiments should consider placing damage
near or on the rings to improve training coverage. On the other hand, the introduced
regrouping strategy for sensor pairs helped address data imbalance. Specifically, it reduced
the number of sensor pairs labeled as zero (no damage) in the selected group, from 90%
down to 80%, thereby improving the learning conditions for the model. The introduced
regrouping of sensors highlights the need for a further investigation of the proposed sensor
arrangement. Future work should explore an equidistant placement of the transducers.
Furthermore, reducing the sensor spacing may also improve the model’s accuracy. Hence,
determining the optimal spacing while minimizing the number of transducers should be
further investigated.

When examining Table 4, a slight effect of damage size on the model’s accuracy can
be observed. This is because a larger weight causes greater changes to the surfaces of the
COPYV, which in turn affects how the guided waves propagate [28].

Addressing multiple incidents of damage can be considered in two cases. The
first case examines the presence of damage in different areas of the vessel, as shown
in Figures 11e and 13d. In this scenario, the UGW signals from the upper region of the
vessel are not affected by damage from the lower region due to the use of appropriate signal
windowing, which filters out reflections and absorptions from other areas. The second case
involves multiple cases of damage on the same vessel areas, as shown in Figure 11d. In this
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scenario, a superposition of the signals is assumed, since signal cancelation would result
in the non-detection of damage. The complexity here mainly arises from the reflections
and absorptions that occur during the propagation of UGWSs between the transmitter and
receiver. The applied windowing does not filter out these signal alterations because they
happen within the time interval containing relevant information used to build the model’s
features. This affects the model’s accuracy, as evident in Tables 2 and 4, particularly when
considering damage configuration 7.

It is worth noting that glued-on damage was used at this stage to validate the model
non-destructively. This testing method is widely employed and yields results similar
to those obtained with real damage [15]. However, future work will assess the model’s
performance on COPVs with actual damage, such as surface cuts or drilled holes.

The validation strategy in this study has also been significantly enhanced. Instead
of leaving out a single sensor pair, the evaluation is performed by leaving out one entire
damage configuration out of a total of eight. Each configuration includes variations in
damage severity (simulated through different weights) or different damage locations.
However, future studies should investigate grouping damage positions more systematically
to further improve generalization.

5. Conclusions

This paper presented an interpretable ML algorithm based on signal similarity for
damage detection and localization in COPVs. The approach involves segmenting UGW
signals into equal intervals, applying similarity measures, and labeling extracted features
based on their proximity to damage. A cutoff is applied to sensor pairs minimally affected
by damage. Unlike previous studies, this work systematically optimizes key parameters,
including segmentation intervals, quantization, and cutoff values.

Experiments were conducted using a COPV equipped with 15 piezoelectric sensors,
forming 105 sensor pairs. Baseline UGW signals were recorded under undamaged condi-
tions, followed by data acquisition with reversible damage applied at different locations.
The machine learning pipeline includes preprocessing in the form of windowing, feature
extraction, and classification using an SVM. The algorithm with the parametrization that
yields the best performance achieves 96.5% accuracy with a localization error of approxi-
mately 21 mm when using quantized classification.

Tomograms generated from the predictions indicate that the proposed method is
robust against outliers and effectively reconstructs damage locations.

Despite these promising results, several limitations should be acknowledged. First,
the method relies on controlled laboratory conditions and simulates reversible damage by
using glued-on weights. Therefore, its performance on more complex real-world damage,
such as impact-induced delaminations or drilled holes, remains to be further validated.
Second, while windowing and feature extraction reduce signal complexity, guided wave
propagation in composite structures is inherently sensitive to environmental and opera-
tional variations, such as temperature, load, and pressure, which may affect robustness in
practical applications. Finally, the use of a single operating frequency (130 kHz) and the
A0 mode provides high sensitivity to stiffness changes. However, the approach may need
to be adapted when other frequencies or wave modes are considered for larger or more
heterogeneous structures. Future work should therefore focus on systematically assessing
the robustness of the approach while varying operational conditions and real damage
scenarios. In this regard, recent studies on robust feature engineering provide valuable
insights and could guide improvements in the generalizability and prediction accuracy of
the proposed method [29].
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The following abbreviations are used in this manuscript:

COPrV Composite-Overwrapped Pressure Vessel

SHM Structural Health Monitoring

UGW Ultrasonic Guided Waves

ML Machine Learning

RAPID Reconstruction Algorithm For Probabilistic Inspection
FESC Feature Extraction, Feature Selection and Classification
NRMSD  Normalized Root Mean Square Deviation

SVM Support Vector Machine

PCA Principle Component Analysis

OGO-CV  Leave-One-Group-Out Cross-Validation
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