Please use this identifier to cite or link to this item: doi:10.22028/D291-46082
Volltext verfügbar? / Dokumentlieferung
Title: Combination of generic novelty detection and supervised classification pipelines for industrial condition monitoring
Author(s): Klein, Steffen
Wilhelm, Yannick
Schütze, Andreas
Schneider, Tizian
Language: English
Title: Technisches Messen : tm
Volume: 91
Issue: 9
Pages: 454-465
Publisher/Platform: De Gruyter
Year of Publication: 2024
Free key words: condition monitoring
machine learning
novelty detection
Zustandsüberwachung
Maschinelles Lernen
Anomaliedetektion
DDC notations: 500 Science
Publikation type: Journal Article
DOI of the first publication: 10.1515/teme-2024-0016
URL of the first publication: https://doi.org/10.1515/teme-2024-0016
Link to this record: urn:nbn:de:bsz:291--ds-460826
hdl:20.500.11880/40420
http://dx.doi.org/10.22028/D291-46082
ISSN: 2196-7113
Date of registration: 26-Aug-2025
Faculty: NT - Naturwissenschaftlich- Technische Fakultät
Department: NT - Systems Engineering
Professorship: NT - Prof. Dr. Andreas Schütze
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
There are no files associated with this item.


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.