Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-46032
Titel: Optimizing superparamagnetic ferrite nanoparticles: microwave-assisted vs. thermal decomposition synthesis methods
VerfasserIn: Moghaddari, Kimia
Schumacher, Lars
Pöttgen, Rainer
Kickelbick, Guido
Sprache: Englisch
Titel: Nanoscale Advances
Bandnummer: 7
Heft: 15
Seiten: 4563-4576
Verlag/Plattform: RSC
Erscheinungsjahr: 2025
DDC-Sachgruppe: 500 Naturwissenschaften
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Superparamagnetic iron oxide nanoparticles are of crucial importance for various applications in medicine and biology as well as in materials science, where properties such as magnetism and inductive heating are advantageous. In this study, we systematically compare the synthesis methods for ferrite nanoparticles with those of pure iron oxide, focusing on their final properties. We synthesized superparamagnetic substituted ferrite nanoparticles with an average diameter of 5 to 8 nm with the general formula of MxFe3−xO4 (M = Fe2+, Mn2+, Co2+) using both conventional thermal decomposition (TD) method and microwave-assisted (MW) methods. Although the manganese-substituted particles obtained through both methods exhibited a narrow size distribution and high surface coverage with oleic acid, they demonstrated lower heating efficiency in an induction field compared to the cobalt-substituted particles. In particular, the replacement of Fe2+ ions with Co2+ ions significantly improved the self-heating ability and increased the specific absorption rate (SAR) from 22.7 for Fe3O4 to 106.3 W gNP−1 for Co0.88Fe2.12O4 nanoparticles. In addition, the concentration of 1,2-dodecanediol in the reaction mixture significantly influenced the shape and size distribution of the particles. Microwave-assisted synthesis resulted in higher incorporation of M2+ ions, as confirmed by ICP-MS and EDX spectroscopy, and more uniform particle sizes due to homogeneous nucleation. By optimizing the microwave method, we were able to produce small size superparamagnetic particles with high saturation magnetization (89.2 emu g−1 at 300 K), capable of generating more heat in the magnetic field, making these particles suitable candidates for induction heating in materials.
DOI der Erstveröffentlichung: 10.1039/D5NA00244C
URL der Erstveröffentlichung: https://doi.org/10.1039/D5NA00244C
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-460326
hdl:20.500.11880/40398
http://dx.doi.org/10.22028/D291-46032
ISSN: 2516-0230
Datum des Eintrags: 18-Aug-2025
Bezeichnung des in Beziehung stehenden Objekts: supplementary information
In Beziehung stehendes Objekt: https://www.rsc.org/suppdata/d5/na/d5na00244c/d5na00244c1.pdf
Fakultät: NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: NT - Chemie
Professur: NT - Prof. Dr. Guido Kickelbick
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
d5na00244c.pdf2,68 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons