Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-46023
Titel: Application of Protein Structure Encodings and Sequence Embeddings for Transporter Substrate Prediction
VerfasserIn: Denger, Andreas
Helms, Volkhard
Sprache: Englisch
Titel: Molecules
Bandnummer: 30
Heft: 15
Verlag/Plattform: MDPI
Erscheinungsjahr: 2025
Freie Schlagwörter: membrane transport
membrane bioinformatics
substrate prediction
protein function prediction
deep learning
machine learning
AlphaFold
protein language model
gene ontology
feature extraction
DDC-Sachgruppe: 500 Naturwissenschaften
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Membrane transporters play a crucial role in any cell. Identifying the substrates they translo cate across membranes is important for many fields of research, such as metabolomics, pharmacology, and biotechnology. In this study, we leverage recent advances in deep learning, such as amino acid sequence embeddings with protein language models (pLMs), highly accurate 3D structure predictions with AlphaFold 2, and structure-encoding 3Di sequences from FoldSeek, for predicting substrates of membrane transporters. We test new deep learning features derived from both sequence and structure, and compare them to the previously best-performing protein encodings, which were made up of amino acid k-mer frequencies and evolutionary information from PSSMs. Furthermore, we compare the performance of these features either using a previously developed SVM model, or with a regularized feedforward neural network (FNN). When evaluating these models on sugar and amino acid carriers in A. thaliana, as well as on three types of ion channels in human, we found that both the DL-based features and the FNN model led to a better and more consistent classification performance compared to previous methods. Direct encodings of 3D structures with Foldseek, as well as structural embeddings with ProstT5, matched the performance of state-of-the-art amino acid sequence embeddings calculated with the ProtT5-XL model when used as input for the FNN classifier.
DOI der Erstveröffentlichung: 10.3390/molecules30153226
URL der Erstveröffentlichung: https://doi.org/10.3390/molecules30153226
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-460235
hdl:20.500.11880/40392
http://dx.doi.org/10.22028/D291-46023
ISSN: 1420-3049
Datum des Eintrags: 14-Aug-2025
Fakultät: NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: NT - Biowissenschaften
Professur: NT - Prof. Dr. Volkhard Helms
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
molecules-30-03226.pdf1,21 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons