Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-45905
Titel: Invisible eyes: Real-time activity detection through encrypted Wi-Fi traffic without machine learning
VerfasserIn: Rasool, Muhammad Bilal
Shah, Uzair Muzamil
Imran, Mohammad
Minhas, Daud Mustafa
Frey, Georg
Sprache: Englisch
Titel: Internet of Things
Bandnummer: 31
Verlag/Plattform: Elsevier
Erscheinungsjahr: 2025
Freie Schlagwörter: Cybersecurity threats
IoT security
Network security
Lightweight attack
Privacy vulnerability
Real-time monitoring
Surveillance privacy risks
DDC-Sachgruppe: 500 Naturwissenschaften
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Wi-Fi camera-based home monitoring systems are increasingly popular for improving security and real-time observation. However, reliance on Wi-Fi introduces privacy vulnerabilities, as sensitive activities within monitored areas can be inferred from encrypted traffic. This paper presents a lightweight, non-ML attack model that analyzes Wi-Fi traffic metadata—such as packet size variations, serial number sequences, and transmission timings—to detect live streaming, motion detection, and person detection. Unlike machine learning-based approaches, our method requires no training data or feature extraction, making it computationally efficient and easily scalable. Empirical testing at varying distances (10 m, 20 m, and 30 m) and under different environmental conditions shows accuracy rates of up to 90% at close range and 72% at greater distances, demonstrating its robustness. Compared to existing ML-based techniques, which require extensive retraining for different camera manufacturers, our approach provides a universal and adaptable attack model. This research underscores significant privacy risks in Wi-Fi surveillance systems and emphasizes the urgent need for stronger encryption mechanisms and obfuscation techniques to mitigate unauthorized activity inference.
DOI der Erstveröffentlichung: 10.1016/j.iot.2025.101602
URL der Erstveröffentlichung: https://doi.org/10.1016/j.iot.2025.101602
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-459058
hdl:20.500.11880/40271
http://dx.doi.org/10.22028/D291-45905
ISSN: 2542-6605
Datum des Eintrags: 23-Jul-2025
Fakultät: NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: NT - Systems Engineering
Professur: NT - Prof. Dr. Georg Frey
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
1-s2.0-S2542660525001155-main.pdf1,86 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons