Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-45882
Titel: Effect of hydrogen on the temperature-dependent activation volume and the strain rate sensitivity of structural steel, coarse-grained and nanocrystalline Nickel
VerfasserIn: Schaefer, Florian
Hasenfratz, Lukas
Schneider, Rouven
Motz, Christian
Sprache: Englisch
Titel: International Journal of Hydrogen Energy
Bandnummer: 136 (2025)
Seiten: 663-671
Verlag/Plattform: Elsevier
Erscheinungsjahr: 2024
Freie Schlagwörter: Strain rate sensitivity
Activation volume
Strain rate jump tensile test
DDC-Sachgruppe: 500 Naturwissenschaften
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: For more than 150 years, it has been considered proven that hydrogen generally degrades the mechanical performance of metals. Nevertheless, there is no consensus on the exact mechanisms, how hydrogen affects plastic deformation. The strain rate sensitivity of a material results from a thermally activated contribution to the rate-determining deformation process, e.g. to dislocation slip or dislocation grain boundary interaction. In this study, the extent to which hydrogen affects thermally activated dislocation motion and hence the strain rate sensitivity was investigated. For this purpose, specimens were cathodically charged in situ, and subjected to nanoindentation. In addition, macro-tensile tests with strain rate jumps were performed varying the temperature into the cryogenic range, to inhibit effusion, but also to test the effect of hydrogen on the activation parameters of deformation. Hydrogen was shown to increase the strain rate sensitivity of f.c.c. nickel, whereas it is not affected for a structural steel with a b.c.c. lattice. The activation volume for plastic deformation in a direct comparison between nanocrystalline and coarse-grained f.c.c. nickel and the b.c.c. structural steel shows, that the rate-determining deformation mechanism appears to change for f.c.c. but not for the b.c.c. material.
DOI der Erstveröffentlichung: 10.1016/j.ijhydene.2024.06.343
URL der Erstveröffentlichung: https://doi.org/10.1016/j.ijhydene.2024.06.343
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-458826
hdl:20.500.11880/40254
http://dx.doi.org/10.22028/D291-45882
ISSN: 0360-3199
Datum des Eintrags: 21-Jul-2025
Fakultät: NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: NT - Materialwissenschaft und Werkstofftechnik
Professur: NT - Prof. Dr. Christian Motz
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
1-s2.0-S0360319924025813-main.pdf1,64 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons