Please use this identifier to cite or link to this item: doi:10.22028/D291-45722
Title: Quantifying and explaining machine learning uncertainty in predictive process monitoring: an operations research perspective
Author(s): Mehdiyev, Nijat
Majlatow, Maxim
Fettke, Peter
Language: English
Title: Annals of Operations Research
Volume: 347 (2025)
Issue: 2
Pages: 991-1030
Publisher/Platform: Springer Nature
Year of Publication: 2024
Free key words: Explainable artificial intelligence (XAI)
Uncertainty quantification (UQ)
Predictive process monitoring
Information systems (IS)
DDC notations: 330 Economics
Publikation type: Journal Article
Abstract: In the rapidly evolving landscape of manufacturing, the ability to make accurate predictions is crucial for optimizing processes. This study introduces a novel framework that combines predictive uncertainty with explanatory mechanisms to enhance decision-making in com plex systems. The approach leverages Quantile Regression Forests for reliable predictive process monitoring and incorporates Shapley Additive Explanations (SHAP) to identify the drivers of predictive uncertainty. This dual-faceted strategy serves as a valuable tool for domain experts engaged in process planning activities. Supported by a real-world case study involving a medium-sized German manufacturing firm, the article validates the model’s effec tiveness through rigorous evaluations, including sensitivity analyses and tests for statistical significance. By seamlessly integrating uncertainty quantification with explainable artificial intelligence, this research makes a novel contribution to the evolving discourse on intelligent decision-making in complex systems.
DOI of the first publication: 10.1007/s10479-024-05943-4
URL of the first publication: https://link.springer.com/article/10.1007/s10479-024-05943-4
Link to this record: urn:nbn:de:bsz:291--ds-457224
hdl:20.500.11880/40209
http://dx.doi.org/10.22028/D291-45722
ISSN: 1572-9338
0254-5330
Date of registration: 1-Jul-2025
Faculty: HW - Fakultät für Empirische Humanwissenschaften und Wirtschaftswissenschaft
Department: HW - Wirtschaftswissenschaft
Professorship: HW - Keiner Professur zugeordnet
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
s10479-024-05943-4.pdf2,98 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons