Please use this identifier to cite or link to this item: doi:10.22028/D291-45604
Title: Adaptive variational quantum minimally entangled typical thermal states for finite temperature simulations
Author(s): Getelina, João C.
Gomes, Niladri
Iadecola, Thomas
Orth, Peter P.
Yao, Yong-Xin
Language: English
Title: SciPost Physics
Volume: 15
Issue: 3
Publisher/Platform: SciPost
Year of Publication: 2023
DDC notations: 500 Science
Publikation type: Journal Article
Abstract: Scalable quantum algorithms for the simulation of quantum many-body systems in ther mal equilibrium are important for predicting properties of quantum matter at finite temperatures. Here we describe and benchmark a quantum computing version of the minimally entangled typical thermal states (METTS) algorithm for which we adopt an adaptive variational approach to perform the required quantum imaginary time evo lution. The algorithm, which we name AVQMETTS, dynamically generates compact and problem-specific quantum circuits, which are suitable for noisy intermediate-scale quan tum (NISQ) hardware. We benchmark AVQMETTS on statevector simulators and perform thermal energy calculations of integrable and nonintegrable quantum spin models in one and two dimensions and demonstrate an approximately linear system-size scaling of the circuit complexity. We further map out the finite-temperature phase transition line of the two-dimensional transverse field Ising model. Finally, we study the impact of noise on AVQMETTS calculations using a phenomenological noise model.
DOI of the first publication: 10.21468/SciPostPhys.15.3.102
URL of the first publication: https://doi.org/10.21468/SciPostPhys.15.3.102
Link to this record: urn:nbn:de:bsz:291--ds-456047
hdl:20.500.11880/40114
http://dx.doi.org/10.22028/D291-45604
ISSN: 2542-4653
Date of registration: 11-Jun-2025
Faculty: NT - Naturwissenschaftlich- Technische Fakultät
Department: NT - Physik
Professorship: NT - Prof. Dr. Peter P. Orth
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
SciPostPhys_15_3_102.pdf851,61 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons