Please use this identifier to cite or link to this item: doi:10.22028/D291-45492
Title: On von Neumann’s inequality on the polydisc
Author(s): Hartz, Michael
Language: English
Title: Mathematische Annalen
Volume: 391 (2025)
Issue: 4
Pages: 5235-5264
Publisher/Platform: Springer Nature
Year of Publication: 2024
Free key words: Primary 47A13
Secondary 47A30
47A60
DDC notations: 510 Mathematics
Publikation type: Journal Article
Abstract: Given a d-tuple T of commuting contractions on Hilbert space and a polynomial p in d-variables, we seek upper bounds for the norm of the operator p(T ). Results of von Neumann and Andô show that if d = 1 or d = 2, the upper bound p(T ) ≤ p∞, holds, where the supremum norm is taken over the polydisc Dd . We show that for d = 3, there exists a universal constant C such that p(T ) ≤ Cp∞ for every homogeneous polynomial p. We also show that for general d and arbitrary polynomials, the norm p(T ) is dominated by a certain Besov-type norm of p.
DOI of the first publication: 10.1007/s00208-024-03040-2
URL of the first publication: https://link.springer.com/article/10.1007/s00208-024-03040-2
Link to this record: urn:nbn:de:bsz:291--ds-454921
hdl:20.500.11880/40071
http://dx.doi.org/10.22028/D291-45492
ISSN: 1432-1807
0025-5831
Date of registration: 2-Jun-2025
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Professorship: MI - Junior Professor Michael Hartz
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
s00208-024-03040-2.pdf408,02 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons