Please use this identifier to cite or link to this item: doi:10.22028/D291-44921
Title: On Drinfeld modular forms of higher rank VII: Expansions at the boundary
Author(s): Gekeler, Ernst-Ulrich
Language: English
Title: Journal of Number Theory
Volume: 269 (2025)
Pages: 260-340
Publisher/Platform: Elsevier
Year of Publication: 2024
Free key words: Drinfeld modular forms
Discriminant forms
Eisenstein series
Boundary behavior
Product formulas
DDC notations: 510 Mathematics
Publikation type: Journal Article
Abstract: We study expansions of Drinfeld modular forms of rank r ≥ 2 along the boundary of moduli varieties. Product formulas for the discriminant forms Δn are developed, which are analogous with Jacobi’s formula for the classical elliptic discriminant. The vanishing orders are described through values at s = 1−r of partial zeta functions of the underlying Drinfeld coefficient ring A. We show linear independence properties for Eisenstein series, which allow to split spaces of modular forms into the subspaces of cusp forms and of Eisenstein series, and give various characterizations of the boundary condition for modular forms.
DOI of the first publication: 10.1016/j.jnt.2024.09.015
URL of the first publication: https://doi.org/10.1016/j.jnt.2024.09.015
Link to this record: urn:nbn:de:bsz:291--ds-449212
hdl:20.500.11880/39884
http://dx.doi.org/10.22028/D291-44921
ISSN: 1096-1658
0022-314X
Date of registration: 2-Apr-2025
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Professorship: MI - Keiner Professur zugeordnet
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
1-s2.0-S0022314X24002269-main.pdf1,16 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons