Please use this identifier to cite or link to this item: doi:10.22028/D291-44624
Title: Monadic second-order logic and the domino problem on self-similar graphs
Author(s): Bartholdi, Laurent
Language: English
Title: Groups, geometry, and dynamics : GGD
Volume: 16
Issue: 4
Pages: 1423-1459
Publisher/Platform: EMS Publ.
Year of Publication: 2022
Free key words: Wang tiles
monadic second-order logic
self-similar graphs
DDC notations: 510 Mathematics
Publikation type: Journal Article
Abstract: We consider the domino problem on Schreier graphs of self-similar groups, and more generally their monadic second-order logic. On the one hand, we prove that if the group is bounded, then the domino problem on the graph is decidable; furthermore, under an ultimate periodicity condition, all its monadic second-order logic is decidable. This covers, for example, the Sierpiński gasket graphs and the Schreier graphs of the Basilica group. On the other hand, we prove undecidability of the domino problem for a class of self-similar groups, answering a question by Barbieri and Sablik, and study some examples including one of linear growth.
DOI of the first publication: 10.4171/ggd/689
URL of the first publication: https://ems.press/journals/ggd/articles/8188707
Link to this record: urn:nbn:de:bsz:291--ds-446247
hdl:20.500.11880/39780
http://dx.doi.org/10.22028/D291-44624
ISSN: 1661-7215
1661-7207
Date of registration: 12-Mar-2025
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Professorship: MI - Prof. Dr. Laurent Bartholdi
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
10.4171-ggd-689.pdf478,98 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons