Please use this identifier to cite or link to this item: doi:10.22028/D291-44580
Title: Commutator width in the first Grigorchuk group
Author(s): Bartholdi, Laurent
Groth, Thorsten
Lysenok, Igor
Language: English
Title: Groups, geometry, and dynamics : GGD
Volume: 16
Issue: 2
Pages: 493-522
Publisher/Platform: EMS Publ.
Year of Publication: 2022
DDC notations: 510 Mathematics
Publikation type: Journal Article
Abstract: Let G be the first Grigorchuk group. We show that the commutator width of G is 2: every element g∈[G,G] is a product of two commutators, and also of six conjugates of a. Furthermore, we show that every finitely generated subgroup H≤G has finite commutator width, which however can be arbitrarily large, and that G contains a subgroup of infinite commutator width. The proofs were assisted by the computer algebra system GAP.
DOI of the first publication: 10.4171/ggd/666
URL of the first publication: https://ems.press/journals/ggd/articles/6879246
Link to this record: urn:nbn:de:bsz:291--ds-445804
hdl:20.500.11880/39769
http://dx.doi.org/10.22028/D291-44580
ISSN: 1661-7215
1661-7207
Date of registration: 11-Mar-2025
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Professorship: MI - Prof. Dr. Laurent Bartholdi
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
10.4171-ggd-666.pdf555,18 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons