Please use this identifier to cite or link to this item: doi:10.22028/D291-44536
Title: Estimating Stock Market Betas via Machine Learning
Author(s): Drobetz, Wolfgang
Hollstein, Fabian
Otto, Tizian
Prokopczuk, Marcel
Language: English
Title: Journal of Financial and Quantitative Analysis
Publisher/Platform: Cambridge University Press
Year of Publication: 2024
DDC notations: 330 Economics
Publikation type: Journal Article
Abstract: Machine learning-based stock market beta estimators outperform established benchmark models both statistically and economically. Analyzing the predictability of time-varying market betas of U.S. stocks, we document that machine learning-based estimators produce the lowest forecast and hedging errors. They also help to create better market-neutral anomaly strategies and minimum variance portfolios. Among the various techniques, random forests perform the best overall. Model complexity is highly time-varying. Historical stock market betas, turnover, and size are the most important predictors. Compared to linear regressions, allowing for nonlinearity and interactions significantly improves predictive performance.
DOI of the first publication: 10.1017/S0022109024000036
URL of the first publication: https://doi.org/10.1017/S0022109024000036
Link to this record: urn:nbn:de:bsz:291--ds-445369
hdl:20.500.11880/39745
http://dx.doi.org/10.22028/D291-44536
ISSN: 1756-6916
0022-1090
Date of registration: 28-Feb-2025
Description of the related object: Supplementary material
Related object: https://static.cambridge.org/content/id/urn%3Acambridge.org%3Aid%3Aarticle%3AS0022109024000036/resource/name/S0022109024000036sup001.pdf
Faculty: HW - Fakultät für Empirische Humanwissenschaften und Wirtschaftswissenschaft
Department: HW - Wirtschaftswissenschaft
Professorship: HW - Prof. Dr. Fabian Hollstein
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
estimating-stock-market-betas-via-machine-learning.pdf1,08 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons