Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
doi:10.22028/D291-44363
Titel: | Robust Distribution-Aware Ensemble Learning for Multi-Sensor Systems |
VerfasserIn: | Goodarzi, Payman Schauer, Julian Schütze, Andreas |
Sprache: | Englisch |
Titel: | Sensors |
Bandnummer: | 25 |
Heft: | 3 |
Verlag/Plattform: | MDPI |
Erscheinungsjahr: | 2025 |
Freie Schlagwörter: | prognostics and health management (PHM) sensor-based systems AutoML deep ensemble learning out-of-distribution (OOD) detection domain adaptation structural health monitoring condition monitoring anomaly detection |
DDC-Sachgruppe: | 500 Naturwissenschaften |
Dokumenttyp: | Journalartikel / Zeitschriftenartikel |
Abstract: | Detecting distribution and domain shifts is critical in decision-sensitive applications, such as industrial monitoring systems. This paper introduces a novel, robust multi-sensor ensemble framework that integrates principles of automated machine learning (AutoML) to address the challenges of domain shifts and variability in sensor data. By leveraging diverse model architectures, hyperparameters (HPs), and decision aggregation strategies, the proposed framework enhances adaptability to unnoticed distribution shifts. The method effectively handles tasks with various data properties, such as the number of sensors, data length, and information domains. Additionally, the integration of HP optimization and model selection significantly reduces the training cost of ensemble models. Extensive evaluations on five publicly available datasets demonstrate the effectiveness of the proposed framework in both targeted supervised tasks and unsupervised distribution shift detection. The proposed method significantly improves common evaluation metrics compared to single-model baselines. Across the selected datasets, the framework achieves near-perfect test accuracy for classification tasks, leveraging the AutoML approach. Additionally, it effectively identifies distribution shifts in the same scenarios, with an average AUROC of 90% and an FPR95 of 20%. This study represents a practical step toward a distribution-aware front-end approach for addressing challenges in industrial applications under real-world scenarios using AutoML, highlighting the novelty of the method. |
DOI der Erstveröffentlichung: | 10.3390/s25030831 |
URL der Erstveröffentlichung: | https://doi.org/10.3390/s25030831 |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-443635 hdl:20.500.11880/39690 http://dx.doi.org/10.22028/D291-44363 |
ISSN: | 1424-8220 |
Datum des Eintrags: | 18-Feb-2025 |
Fakultät: | NT - Naturwissenschaftlich- Technische Fakultät |
Fachrichtung: | NT - Systems Engineering |
Professur: | NT - Prof. Dr. Andreas Schütze |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
sensors-25-00831.pdf | 614,08 kB | Adobe PDF | Öffnen/Anzeigen |
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons