Please use this identifier to cite or link to this item: doi:10.22028/D291-44347
Title: Large-scale inference of competing endogenous RNA networks with sparse partial correlation
Author(s): List, Markus
Dehghani Amirabad, Azim
Kostka, Dennis
Schulz, Marcel H.
Language: English
Title: Bioinformatics
Volume: 35
Issue: 14
Pages: i596-i604
Publisher/Platform: Oxford Univ. Press
Year of Publication: 2019
DDC notations: 004 Computer science, internet
Publikation type: Journal Article
Abstract: MicroRNAs (miRNAs) are important non-coding post-transcriptional regulators that are involved in many biological processes and human diseases. Individual miRNAs may regulate hundreds of genes, giving rise to a complex gene regulatory network in which transcripts carrying miRNA binding sites act as competing endogenous RNAs (ceRNAs). Several methods for the analysis of ceRNA interactions exist, but these do often not adjust for statistical confounders or address the problem that more than one miRNA interacts with a target transcript.
DOI of the first publication: 10.1093/bioinformatics/btz314
URL of the first publication: https://academic.oup.com/bioinformatics/article/35/14/i596/5529172
Link to this record: urn:nbn:de:bsz:291--ds-443470
hdl:20.500.11880/39636
http://dx.doi.org/10.22028/D291-44347
ISSN: 1367-4811
1367-4803
Date of registration: 12-Feb-2025
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Informatik
Professorship: MI - Keiner Professur zugeordnet
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
bioinformatics_35_14_i596.pdf479,3 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons