Please use this identifier to cite or link to this item: doi:10.22028/D291-44290
Volltext verfügbar? / Dokumentlieferung
Title: Fully conservative spectral Galerkin–Petrov method for the inhomogeneous Boltzmann equation
Author(s): Keßler, Torsten
Rjasanow, Sergej
Language: English
Title: Kinetic & Related Models
Volume: 12
Issue: 3
Publisher/Platform: AIMS
Year of Publication: 2019
DDC notations: 510 Mathematics
Publikation type: Journal Article
Abstract: In this paper, we present an application of a Galerkin-Petrov method to the spatially one-dimensional Boltzmann equation. The three-dimensional velocity space is discretised by a spectral method. The space of the test functions is spanned by polynomials, which includes the collision invariants. This automatically insures the exact conservation of mass, momentum and energy. The resulting system of hyperbolic PDEs is solved with a finite volume method. We illustrate our method with two standard tests, namely the Fourier and the Sod shock tube problems. Our results are validated with the help of a stochastic particle method.
DOI of the first publication: 10.3934/krm.2019021
URL of the first publication: https://www.aimsciences.org/article/doi/10.3934/krm.2019021
Link to this record: urn:nbn:de:bsz:291--ds-442903
hdl:20.500.11880/39583
http://dx.doi.org/10.22028/D291-44290
ISSN: 1937-5077
Date of registration: 5-Feb-2025
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Professorship: MI - Prof. Dr. Sergej Rjasanow
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
There are no files associated with this item.


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.