Please use this identifier to cite or link to this item:
doi:10.22028/D291-44181
Title: | In silico read normalization using set multi-cover optimization |
Author(s): | Durai, Dilip Schulz, Marcel H. |
Language: | English |
Title: | Bioinformatics |
Volume: | 34 |
Issue: | 19 |
Pages: | 3273-3280 |
Publisher/Platform: | Oxford Univ. Press |
Year of Publication: | 2018 |
DDC notations: | 004 Computer science, internet |
Publikation type: | Journal Article |
Abstract: | De Bruijn graphs are a common assembly data structure for sequencing datasets. But with the advances in sequencing technologies, assembling high coverage datasets has become a computational challenge. Read normalization, which removes redundancy in datasets, is widely applied to reduce resource requirements. Current normalization algorithms, though efficient, provide no guarantee to preserve important k-mers that form connections between regions in the graph. |
DOI of the first publication: | 10.1093/bioinformatics/bty307 |
URL of the first publication: | https://academic.oup.com/bioinformatics/article/34/19/3273/4975418 |
Link to this record: | urn:nbn:de:bsz:291--ds-441812 hdl:20.500.11880/39514 http://dx.doi.org/10.22028/D291-44181 |
ISSN: | 1367-4811 1367-4803 |
Date of registration: | 28-Jan-2025 |
Faculty: | MI - Fakultät für Mathematik und Informatik |
Department: | MI - Informatik |
Professorship: | MI - Keiner Professur zugeordnet |
Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
File | Description | Size | Format | |
---|---|---|---|---|
bioinformatics_34_19_3273.pdf | 395,85 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License