Please use this identifier to cite or link to this item:
doi:10.22028/D291-43997
Title: | Fluorescent histidine-derived biodynamers as biocompatible and highly water-soluble copper(ii)-sensors |
Author(s): | Zeroug-Metz, Lena Kamal, Mohamed A. M. Bassil, Justine Elamaldeniya, Kalanika Ryu, Bo Hyun Buhler, Eric Lee, Sangeun |
Language: | English |
Title: | RSC Applied Polymers |
Volume: | 2 |
Issue: | 6 |
Pages: | 1124-1138 |
Publisher/Platform: | Royal Society of Chemistry |
Year of Publication: | 2024 |
DDC notations: | 500 Science |
Publikation type: | Journal Article |
Abstract: | Amino-acid derived biodynamers, characterized as dynamic biopolymers, are synthesized under acidic pH conditions through dynamic covalent chemistry (DCC) between amino acid hydrazides and carbazole hexaethylene glycols (CA-HG). In the field of biomedical research, especially for the designs of smart drug delivery systems, DCC has increasingly gained popularity within the last years. Biodynamers possess a range of advantageous properties, such as fluorescence, tunability through amino acid monomer exchange, water solubility, and biocompatibility. These characteristics make them promising materials for a variety of biomedical applications. By leveraging these beneficial traits, biodynamers can be applied as detectors for physiologically important metal ions, utilizing changes in their fluorescence emission upon binding to the DCC framework and polymer’s side chains. In this study, we investigated the potential of histidine-based biodynamers (HisBD) for detecting a key biomarker, Cu(II), using in silico simulations and cuvette assays. Our results revealed that HisBD exhibited selective fluorescence in the presence of Cu(II), with approximately 90% quenching of fluorescence due to binding site interactions and side chain effects under physiological conditions. This study broadens the applications of DCC and underscores the potential of HisBD as a candidate for Cu(II) chemosensors, overcoming the limitations of current systems such as limited solubility, sensitivity, and biocompatibility. |
DOI of the first publication: | 10.1039/D4LP00126E |
URL of the first publication: | https://doi.org/10.1039/D4LP00126E |
Link to this record: | urn:nbn:de:bsz:291--ds-439973 hdl:20.500.11880/39368 http://dx.doi.org/10.22028/D291-43997 |
ISSN: | 2755-371X |
Date of registration: | 13-Jan-2025 |
Description of the related object: | Supplementary information |
Related object: | https://www.rsc.org/suppdata/d4/lp/d4lp00126e/d4lp00126e1.pdf https://www.rsc.org/suppdata/d4/lp/d4lp00126e/d4lp00126e2.pdf https://www.rsc.org/suppdata/d4/lp/d4lp00126e/d4lp00126e3.pdf https://www.rsc.org/suppdata/d4/lp/d4lp00126e/d4lp00126e4.pdf https://www.rsc.org/suppdata/d4/lp/d4lp00126e/d4lp00126e5.pdf https://www.rsc.org/suppdata/d4/lp/d4lp00126e/d4lp00126e6.pdf https://www.rsc.org/suppdata/d4/lp/d4lp00126e/d4lp00126e7.pdf https://www.rsc.org/suppdata/d4/lp/d4lp00126e/d4lp00126e8.pdf https://www.rsc.org/suppdata/d4/lp/d4lp00126e/d4lp00126e9.pdf https://www.rsc.org/suppdata/d4/lp/d4lp00126e/d4lp00126e10.pdf |
Faculty: | NT - Naturwissenschaftlich- Technische Fakultät |
Department: | NT - Pharmazie |
Professorship: | NT - Prof. Dr. Claus-Michael Lehr NT - Jun.-Prof. PhD. Sangeun Lee |
Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
File | Description | Size | Format | |
---|---|---|---|---|
d4lp00126e.pdf | 1,68 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License