Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-43712
Titel: Machine Learning-assisted immunophenotyping of peripheral blood identifies innate immune cells as best predictor of response to induction chemo-immunotherapy in head and neck squamous cell carcinoma - knowledge obtained from the CheckRad-CD8 trial
VerfasserIn: Hecht, Markus
Frey, Benjamin
Gaipl, Udo S.
Tianyu, Xie
Eckstein, Markus
Donaubauer, Anna-Jasmina
Klautke, Gunther
Illmer, Thomas
Fleischmann, Maximilian
Laban, Simon
Hautmann, Matthias G.
Tamaskovics, Bálint
Brunner, Thomas B.
Becker, Ina
Zhou, Jian-Guo
Hartmann, Arndt
Fietkau, Rainer
Iro, Heinrich
Döllinger, Michael
Gostian, Antoniu-Oreste
Kist, Andreas M.
Sprache: Englisch
Titel: Neoplasia
Bandnummer: 49
Verlag/Plattform: Stockton Press
Erscheinungsjahr: 2024
Freie Schlagwörter: Chemotherapy
Immunotherapy
HNSCC
Induction therapy
Immune phenotyping
DDC-Sachgruppe: 610 Medizin, Gesundheit
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Individual prediction of treatment response is crucial for personalized treatment in multimodal approaches against head-and-neck squamous cell carcinoma (HNSCC). So far, no reliable predictive parameters for treatment schemes containing immunotherapy have been identified. This study aims to predict treatment response to induction chemo-immunotherapy based on the peripheral blood immune status in patients with locally advanced HNSCC.
DOI der Erstveröffentlichung: 10.1016/j.neo.2023.100953
URL der Erstveröffentlichung: https://www.sciencedirect.com/science/article/pii/S1476558623000775
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-437128
hdl:20.500.11880/39160
http://dx.doi.org/10.22028/D291-43712
ISSN: 1476-5586
1522-8002
Datum des Eintrags: 11-Dez-2024
Fakultät: M - Medizinische Fakultät
Fachrichtung: M - Radiologie
Professur: M - Keiner Professur zugeordnet
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
1-s2.0-S1476558623000775-main.pdf3,64 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons