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A B S T R A C T   

Purpose: Individual prediction of treatment response is crucial for personalized treatment in multimodal ap-
proaches against head-and-neck squamous cell carcinoma (HNSCC). So far, no reliable predictive parameters for 
treatment schemes containing immunotherapy have been identified. This study aims to predict treatment 
response to induction chemo-immunotherapy based on the peripheral blood immune status in patients with 
locally advanced HNSCC. 
Methods: The peripheral blood immune phenotype was assessed in whole blood samples in patients treated in the 
phase II CheckRad-CD8 trial as part of the pre-planned translational research program. Blood samples were 
analyzed by multicolor flow cytometry before (T1) and after (T2) induction chemo-immunotherapy with 
cisplatin/docetaxel/durvalumab/tremelimumab. Machine Learning techniques were used to predict pathological 
complete response (pCR) after induction therapy. 
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Results: The tested classifier methods (LDA, SVM, LR, RF, DT, and XGBoost) allowed a distinct prediction of pCR. 
Highest accuracy was achieved with a low number of features represented as principal components. Immune 
parameters obtained from the absolute difference (lT2-T1l) allowed the best prediction of pCR. In general, less 
than 30 parameters and at most 10 principal components were needed for highly accurate predictions. Across 
several datasets, cells of the innate immune system such as polymorphonuclear cells, monocytes, and plasma-
cytoid dendritic cells are most prominent. 
Conclusions: Our analyses imply that alterations of the innate immune cell distribution in the peripheral blood 
following induction chemo-immuno-therapy is highly predictive for pCR in HNSCC.   

Introduction 

Immune checkpoint inhibitors that inhibit the programmed death 
protein 1 (PD-1)/programmed death protein ligand 1 (PD-L1) pathway 
are efficient in the treatment of recurrent and/or metastatic head and 
neck squamous cell carcinoma (HNSCC) [1,2]. In surgically not resect-
able locally advanced HNSCC, definitive radiochemotherapy is the 
treatment of choice [3]. Another treatment strategy especially for 
laryngeal and hypopharyngeal cancer is the administration of induction 
chemotherapy followed by radio(chemo)therapy [4,5]. Whereas in-
duction chemotherapy failed to improve survival compared to radio-
chemotherapy alone [6], it can be used to identify patients with 
biologically sensitive tumors that can successfully be treated with 
larynx-preserving radiochemotherapy [7,8]. 

Based on the high efficacy of PD-1 inhibitors in the recurrent/met-
astatic situation, the CheckRad-CD8 trial studied the addition of 
immunotherapy to induction chemotherapy to select patients with 
locally advanced HNSCC for chemotherapy-free definitive radio- 
immunotherapy. In the CheckRad-CD8 trial patients with increasing 
intratumoral CD8+ immune cells in the surgical re-biopsy compared to 
baseline and patients with pathologic complete response (pCR) after 
induction chemo-immunotherapy were selected for radio-
immunotherapy [9,10]. 

Several approaches were made to establish predictive biomarkers in 
HNSCC. Immunohistochemistry of PD-L1 was established in clinical 
trials, whereas for chemoimmunotherapy (platinum/5-flurouracil/ 
pembrolizumab) the objective response rates in tumors with PD-L1 CPS 
<1, PD-L1 CPS ≥1 and PD-L1 CPS≥20 tumors were 35.6 %, 36.4 % and 
42.9 %, respectively, which is far from an optimum patient selection [1, 
11,12]. Further biomarker approaches such as tumor mutational burden 
(TMB), genetic signatures or immunologic active danger signals have 
potential predictive value but are not suitable for clinical use [13–16]. 

The pre-planned translational research program of the CheckRad- 
CD8 trial contained the analysis of the peripheral blood immune 
phenotype for the prediction and identification of good responders to 
induction chemo-immunotherapy. In this study, we analyzed the large 
dataset obtained by this multiparameter flow cytometric approach using 
a combination of different machine learning and ensemble algorithms. 
We further provide a strategy to determine the predictive power of pre-, 
post- and pre/post-comparison data to determine the probability of pCR 
and therefore, therapy monitoring concepts. 

Material and methods 

Clinical trial design and pre-planned translational reseach 

The CheckRad-CD8 trial is a single-arm multicenter phase II study. 
Patients with histologically confirmed HNSCC stage III-IVB (according 
to TNM 8th edition) of the oral cavity, oropharynx, hypopharynx or 
supraglottic larynx were enrolled in this trial [17]. Treatment consisted 
of a single cycle of induction chemo-immunotherapy with cisplatin 
30mg/m2 body surface area (BSA) on days 1-3 and docetaxel 75mg/m2 

BSA on day 1. Tremelimumab (anti-CTLA4) fixed dose of 75mg and 
durvalumab (anti-PDL1) fixed dose of 1500 mg were both administered 
on day 5. Restaging assessment consisted of diagnostic imaging and 

endoscopy including representative re-biopsy of the primary tumor area 
was performed on day 22-26. Patients with an increase of intratumoral 
CD8+ cells of at least 20 % compared to baseline or without residual 
tumor in the re-biopsy defined as pathologic complete response (pCR) 
continued study treatment. 

Further study treatment consisted of radiotherapy up to a cumulative 
dose of 70.0/63.0/54.0 Gy (tumor, involved neck, elective neck) 
delivered in 35 fractions by intensity-modulated radiation therapy. 
Immunotherapy continued with additional three cycles of durvalumab/ 
tremelimumab followed by eight cycles of durvalumab monotherapy 
administered concomitant and subsequent to radiotherapy every fourth 
week. 

The preplanned translational research program contained peripheral 
blood immune phenotyping (IPT) at several defined time points during 
study treatment according to previously optimized protocols [18,19]. 
This analysis investigates the value of peripheral blood immune cells to 
predict pCR after induction chemoimmunotherapy by using different 
machine learning and ensemble algorithms. The immune status of the 
patients was analyzed in this study pre-treatment (baseline, T1) and at 
the time point of re-staging after induction chemoimmunotherapy (T2) 
before entering radioimmunotherapy. In order to assess not only abso-
lute cell numbers at the distinct time points, but also changes of immune 
cells, four different approaches were chosen: cell counts pre-induction 
(T1), cell counts post-induction (T2), the difference of cell counts pre- 
and post-induction (T2-T1), the absolute difference of cell counts pre- 
and post-induction (|T2-T1|). The latter was included to account for 
relevant changes when the direction of change is not important. The 
chosen study approach is visualized in Fig. 1. 

Trial oversight 

The clinical trial was registered with ClinicalTrials.gov (Clin-
icalTrials.gov ID NCT03426657). The leading institutional review board 
at the Friedrich-Alexander-Universität Erlangen-Nürnberg (number: 
131_18 Az) and all institutional review boards approved the trial 
including the translational research program. All patients gave written 
informed consent before enrollment. The trial is an investigator- 
sponsored trial (IST). 

Peripheral blood immune phenotyping technique 

The detailed immune phenotyping (IPT) was performed by multi-
color flow cytometry, which allows the analysis of numerous immune 
cell types in whole blood at once. The immune cells are identified in 
terms of their type, number and their activation state by the expression 
of certain cell surface proteins, as previously performed by our group for 
a prospective development and validation of a liquid immune profile- 
based signature (LIPS) to predict response of patients with recurrent/ 
metastatic cancer to immune checkpoint inhibitors [16]. 

Endpoint of the biomarker analysis 

The endpoint of this biomarker analysis was pCR in the re-biopsy 
after induction chemoimmunotherapy. Biopsies were obtained by an 
experienced otolaryngologic oncologist based on either the visible 
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residual tumor or the originally documented and imaged tumor area. 
Pathologic response was assessed in central pathology. All specimens 
were stained with hematoxylin-eosin and assessed by two experienced 
pathologists (i.e. M.E. and A.H.). To ensure sufficient coverage of a 
former tumor bed, relevant resorptive inflammation together with 
granulation and scar tissue was required in the post-induction biopsies. 
In order to make sure that residual tumor is not overseen, six section 
levels per specimen were evaluated. 

Machine learning-based data analysis methods 

Machine learning methods were used to predict the pCR probability 
based on the IPT data at different time points or combinations (see above 
and Fig. 1). All data were inspected manually to avoid any artifacts. The 
data contains 69, 63 and 61 patients for T1, T2, and T2-T1 or |T2-T1|, 
respectively. We performed stratified cross-validation with eight pa-
tients in the test set. We used univariate feature selection followed by 
principal component analysis to rebase the remaining features, i.e. the 
cell counts obtained from the IPT, on a linear combination of orthogonal 
principal components. These pre-processed data were used to fit clas-
sifiers, namely linear discriminant analysis (LDA), support vector ma-
chines (SVM), logistic regression (LR), random forests (RF), decision 
trees (DT) and gradient boosting techniques (XGBoost). For each clas-
sifier, we performed an intense hyperparameter search including the 
number of selected features, the number of principal components, and 
classifier-specific tuning parameters. Classifier-specific hyper-
parameters are shown in Supplementary Table 3. As evaluation criteria, 
we used confusion matrix metrics, namely true positive rate, true 
negative rate, false positive rate, and false negative rate, and computed 
mean accuracy, standard deviation, and area under the curve (AUC) for 
receiver-operating curves (ROC). We finally used soft and hard voting 
ensemble strategies to improve the overall pCR prediction accuracy. 

Results 

Clinical results 

Between September 2018 and May 2020, eighty patients were 
enrolled in the phase II CheckRad-CD8 trial in eight German centers. 
Data cut-off was January 17th, 2021. One patient did not receive any 
study treatment and was excluded from all analyses. Baseline charac-
teristics of the patients have previously been reported [9]. The safety 
profile of induction chemoimmunotherapy only [10] and the entire 
treatment consisting of induction chemoimmunotherapy, radiotherapy 
and maintenance immunotherapy has also already been published [9]. 
After induction chemoimmunotherapy, 41 patients (52 %) developed 
pCR and 35 had residual tumor (44 %). In three patients (4 %) no 
re-biopsy was performed due to toxicity (n = 2) or COVID-19 disease (n 
= 1). Detailed information on clinical efficacy have been reported before 
[9]. 

Availability of blood samples and biopsy specimens 

Post-induction biopsy specimens were available in 76 patients, 
which represents 100 % of the patients with re-biopsy. A blood sample 
for IPT was provided by 69 patients at T1 (pre-induction) and by 63 at 
T2, i.e. post-induction. Thus, the cohorts contained the following num-
ber of datasets: pre-induction (T1) n = 69, post-induction (T2) n = 63, 
difference post- and pre-induction (T2-T1) n = 61, absolute difference 
pre- and post-induction (|T2-T1|) n = 61. 

Performance of different machine learning approaches 

We first evaluated which classifiers are capable of predicting pCR 
given the pre-processed data. We found that in principle all classifier 
methods allow a prediction better than chance (Supplementary Table 1). 
In general, more complex algorithms allow a higher pCR prediction 
accuracy. 

As shown in Fig. 2, by systematically varying the incorporated 
number of features using features proposed by univariate feature se-
lection in decreasing importance and the number of used principal 
components (Fig. 2A), we found that the best accuracy was achieved 
with a low number of features and principal components. This suggests 
that further information adds more noise to the classifier than improving 
the prediction. The best accuracy was achieved by the immune param-
eters obtained from lT2-T1l (Fig. 2B). In general, we found that less than 
30 parameters and at most 10 principal components are needed for 
highly accurate predictions. 

Predictive peripheral blood immune biomarkers 

The prediction of pCR before chemoimmunotherapy induction (i.e. 
T1) is of particular clinical interest for the selection of the most bene-
ficial therapy approach for the individual patient. Using the strategy 
shown in Fig. 2, we found that IPT at T1 is indeed predictive at most of 
77.8 % accuracy using a support vector machine as a classification 
model, closely followed by boosting algorithms (75.5 % accuracy). The 
IPT after immunotherapy (i.e. T2) is also predictive to a similar extent 
(up to 78.5 % accuracy) as for T1. A similar picture emerges when 
looking at the difference T2-T1. There, the maximum accuracy is 78.3 %. 
However, when computing the accuracy on the absolute difference |T2- 
T1|, the classifiers showed a top performance up to 84.0 % (logistic 
regression), followed by 82.8 % when using support vector machines. 
This suggests that undirected differences in the IPT panel between T2 
and T1 are highly predictive for pCR events. 

We further investigated if a combination of several classifiers 
increased the prediction accuracy (ensemble solutions). When using the 
six best predictive classifiers in a hard-voting ensemble, we gain a top 
mean accuracy of 87.0 %, when the 61 markers of the IPT were 
considered (Fig. 3). 

In contrast, the voting accuracy of IPT data before induction therapy 
resulted only in a maximum accuracy of 79.0 % with 43 biomarkers 

Fig. 1. Study approach. CheckRad-CD8 trial patients underwent immune phenotyping of the peripheral blood before and after chemoimmunotherapy induction 
yielding data at time point T1 and T2, respectively. Either the data at T1 or T2 alone, or their combination using their (absolute) difference in cell count values were 
used after preprocessing in machine learning-based classifiers to predict the pathological complete responder event (pCR). We additionally evaluated ensemble 
solutions to achieve a higher predictive power by combining several “weaker” classifiers. 
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being considered. Interestingly, the ensemble strategy with the highest 
accuracy incorporates mainly four classifiers trained on the absolute 
difference dataset, and two classifiers on the relative difference 
(XGBoost and decision trees), with 61 biomarkers being included. 

Next, we asked which of the features are (I) predictive for pCR and 
(II) are overlapping with the dataset groups. As visualized in Fig. 4, 
across several datasets, cells of the innate immune system are most 
prominent here. 

Fig. 2. Low dimensional feature representations allow accurate pCR prediction. A) Preprocessing pipeline for each dataset generated in Fig. 1. After univariate 
feature selection, principal component analysis was performed. The newly transformed vectors are used for Machine Learning. B) Classification accuracy heatmap of 
used features from univariate feature selection against used principal components for |T2-T1|. Red circle indicates maximum accuracy, yellow circle high accuracy 
with only a single principal component. C) – E) same as panel B) but for T1, T2 and T2-T1, respectively. 

Fig. 3. Classifier comparison. The graph shows the relation of incorporated biomarkers (x-axis) and the yielded mean accuracy (y-axis) for a given classifier in 
relation to before the chemoimmunotherapy induction (left) or after (right). It is worth noting that the overall prediction accuracy is higher after the induction 
therapy than before. 
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For T1, T2 and |T2-T1| polymorphonuclear cells (PMN) per se, neu-
trophils, and plasmacytoid dendritic cells (pDCs) had high predictive 
power. Regarding T1 and T2, again pDCs and additionally monocytes 
have to be considered. The expression of HLA-DR on the latter innate 
immune cells is predictive when being analyzed at T2 or calculated by | 
T2-T1|, while natural killer (NK) cells are prominent for T1 and |T2-T1| 
with this regard. Again PMN, but now basophils have predictive value 
for pCR for T1, T2-T1 and |T2-T1|. Only one subpopulation of adaptive 
immune cells (HLA-DR positive T helper cells) was predictive at T1 and 
T2-T1 (Fig. 4). An overview of the biomarker feature importance for top 
performing classifiers for the relevant T1 and |T2-T1| cases is shown in 
Supplementary Table 2. 

Discussion 

Prediction of therapy response to immunotherapies is still a big 
challenge, not only for HNSCC [20]. In this study, we have assessed the 
potential of parameters obtained from detailed IPT of the peripheral 
blood of patients with HNSCC who were treated within the 
CheckRad-CD8 trial to predict pathological pCR events using standard 
methods of Machine Learning. We found that especially cells of the 
innate immune system are features being essential for highly predictive 
Machine Learning models. 

Low-dimensional space is beneficial for pCR prediction 

The detailed analyses revealed that a low dimensional representation 
of the data leads to better results than using the raw measurements 
available (Fig. 2 and Table 1). This is consistent with previous reports on 
high dimensionality [21–23]. The sophisticated data preprocessing al-
lows a multitude of machine learning methods to achieve high classifi-
cation accuracy (Supplementary Table 1). However, we also detected a 
trend that a higher machine learning method complexity coincides with 
higher prediction accuracy (Table 1, Fig. 3), whereas we also find that a 
low amount of features are already sufficient to predict pCR above 
chance levels (Figs. 2 and 3). 

Early prediction of pCR using routine blood tests 

Early prediction of pCR for a specific patient cohort that allows a 
tailored therapy monitoring strategy is needed to increase patient care 

and reduce economic burden in the clinic [24]. In previous investigations, 
we identified histological parameters such as intratumoral CD8+
immune cells and PD-L1 expression on immune cells to be associated with 
pCR in HNSCC patients [10]. However, considering the dynamics of 
immune changes longitudinal monitoring of changes of immune cells and 
markers should be envisaged by analyzing easily available blood-based 
immune markers [16]. We identified that the peripheral blood immune 
status of the patients at T1, i.e. before induction chemoimmunotherapy, is 
capable of predicting pCR at an accuracy of almost 80 %. It can be 
expected that future studies will further increase the detection accuracy. 

Predictive potential of innate immune cells in induction chemoimmuno- 
therapy of HNSCC Patients 

This prospective translational research approach identified innate 
immune cells as most relevant predictors of treatment response to 
combined induction chemo-immunotherapy with immune checkpoint 
inhibitors in HNSCC. Particularly polymorphonuclear cells and their 
subpopulations such as neutrophils and basophils, NK cells, Monocytes, 
and pDCs are present across several datasets. It has become obvious that 
high neutrophil counts are a negative predictor of tumour responses to 
immune checkpoint inhibitor-based immune therapies [24]. In this re-
gard, this study is the first to add new findings that the magnitude of the 
changes of the investigated immune cells pre- to post- induction che-
moimmunotherapy and their overall count before therapy are similarly 
effective for predicting pCR after induction chemoimmunotherapy in 
locally advanced HNSCC. Besides neutrophils, basophils, NK cells and 
monocytes were additionally identified as valuable markers of response 
predictions through machine learning methods. Based on retrospective 
analyses, Hiltbrunner et al. showed that increased basophil counts were 
associated with increased tumour size reduction, concomitantly with the 
development of an irAE in metastatic non-small cell lung cancer patients 
treated with immune checkpoint inhibitors [25]. Translational studies 
further revealed that even before the start of radiochemotherapy, 
basophil levels of patients with brain tumours suffering from 
HCMV-associated encephalopathy are significantly lower compared 
with those who were not [26]. Pre-treatment neutrophil to lymphocyte 
ratio has been shown to be prognostic among stage III NSCLC patients 
treated with adjuvant immunotherapy, and may serve as a predictive 
biomarker of immunotherapy benefit [27]. In this regard, we showed 
here for the first time that both, neutrophils and basophils have to be 

Fig. 4. Identified peripheral blood immune biomarkers with predictive value. Overlap of biomarkers with high predictive power across the investigated 
datasets. Notably, especially cells of the innate immune system cells are highly represented. 
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considered for prediction of responses to induction chemo-
immunotherapy in locally advanced HNSCC. In addition, pDCs and NK 
cells should also be taken into account. As already shown within the 
ST-ICI trial (ClinicalTrials.gov ID NCT03453892) where 54 peripheral 
blood immune markers were included in a univariate cox survival 
analysis, pDCs and NK cells are part of the 14 immune cell subtypes 
which are associated with overall survival of HNSCC and NSCLC patients 
who were treated with immune checkpoint inhibitors [16]. Thus, these 
immune biomarkers have proven their suitability to predict pCR 
following induction chemoimmunotherapy in HNSCC. Combined with 
standard machine learning methods they are potential candidates for 
future standard analyses of blood samples, rendering our approach a 
low-cost application for therapy monitoring decisions. We conclude that 

the undirected alteration of the innate immune cell distribution in the 
peripheral blood due to induction chemoimmunotherapy is predictive 
for pCR in HNSCC. This interesting fact, i.e. that the alteration is undi-
rected, can be the result of the presence of multiple modulating events at 
once, such as systemic responses, bone marrow turnover and mobiliza-
tion, and homeostatic disruption. It has been reported previously that 
white blood cell counts can vary largely dynamically after full body 
radation [28]. Further, mathematical simulation studies of chemo-
immunotherapy have shown that multiple cell count responses after 
induction are possible, being inconclusive in the direction of each white 
blood cell type [29]. Even if global trends are conclusive, such as a 
decline of immune cells after radiation [28], we are only observing two 
short snapshots of the process. Our findings together with these studies 

Table 1 
Description of Peripheral blood immune cell biomarkers which were used in different approaches.  
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suggest, that there the response is highly dynamic and dependent of 
multiple factors, where the change of the system is more predictive than 
the system itself. 
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