Please use this identifier to cite or link to this item: doi:10.22028/D291-43657
Title: Machine learning and phylogenetic analysis allow for predicting antibiotic resistance in M. tuberculosis
Author(s): Yurtseven, Alper
Buyanova, Sofia
Agrawal, Amay Ajaykumar
Bochkareva, Olga O.
Kalinina, Olga V.
Language: English
Title: BMC microbiology
Volume: 23
Issue: 1
Publisher/Platform: BioMed Central
Year of Publication: 2023
DDC notations: 610 Medicine and health
Publikation type: Journal Article
Abstract: Antimicrobial resistance (AMR) poses a significant global health threat, and an accurate prediction of bacterial resistance patterns is critical for effective treatment and control strategies. In recent years, machine learning (ML) approaches have emerged as powerful tools for analyzing large-scale bacterial AMR data. However, ML methods often ignore evolutionary relationships among bacterial strains, which can greatly impact performance of the ML methods, especially if resistance-associated features are attempted to be detected. Genome-wide association studies (GWAS) methods like linear mixed models accounts for the evolutionary relationships in bacteria, but they uncover only highly significant variants which have already been reported in literature.
DOI of the first publication: 10.1186/s12866-023-03147-7
URL of the first publication: https://bmcmicrobiol.biomedcentral.com/articles/10.1186/s12866-023-03147-7
Link to this record: urn:nbn:de:bsz:291--ds-436578
hdl:20.500.11880/39118
http://dx.doi.org/10.22028/D291-43657
ISSN: 1471-2180
Date of registration: 4-Dec-2024
Faculty: M - Medizinische Fakultät
Department: M - Medizinische Biometrie, Epidemiologie und medizinische Informatik
Professorship: M - Prof. Dr. Olga Kalinina
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
s12866-023-03147-7.pdf1,93 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons