Please use this identifier to cite or link to this item:
doi:10.22028/D291-43566
Title: | On commutator length in free groups |
Author(s): | Bartholdi, Laurent Ivanov, Sergei O. Fialkovski, Danil |
Language: | English |
Title: | Groups, geometry, and dynamics : GGD |
Volume: | 18 |
Issue: | 1 |
Pages: | 191-202 |
Publisher/Platform: | EMS Publ. |
Year of Publication: | 2024 |
Free key words: | Commutator length equations in free groups |
DDC notations: | 500 Science |
Publikation type: | Journal Article |
Abstract: | Let F be a free group. We present for arbitrary g∈N a LOGSPACE (and thus polynomial time) algorithm that determines whether a given w∈F is a product of at most g commutators; and more generally, an algorithm that determines, given w∈F, the minimal g such that w may be written as a product of g commutators (and returns ∞ if no such g exists). This algorithm also returns words x 1 ,y 1 ,…,x g ,y g such that w=[x 1 ,y 1]…[x g ,y g]. These algorithms are also efficient in practice. Using them, we produce the first example of a word in the free group whose commutator length decreases under taking a square. This disproves in a very strong sense a conjecture by Bardakov. |
DOI of the first publication: | 10.4171/ggd/747 |
URL of the first publication: | https://ems.press/journals/ggd/articles/12655883 |
Link to this record: | urn:nbn:de:bsz:291--ds-435663 hdl:20.500.11880/39041 http://dx.doi.org/10.22028/D291-43566 |
ISSN: | 1661-7215 1661-7207 |
Date of registration: | 27-Nov-2024 |
Faculty: | MI - Fakultät für Mathematik und Informatik |
Department: | MI - Mathematik |
Professorship: | MI - Prof. Dr. Laurent Bartholdi |
Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
File | Description | Size | Format | |
---|---|---|---|---|
10.4171-ggd-747.pdf | 258,03 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License