Please use this identifier to cite or link to this item: doi:10.22028/D291-43566
Title: On commutator length in free groups
Author(s): Bartholdi, Laurent
Ivanov, Sergei O.
Fialkovski, Danil
Language: English
Title: Groups, geometry, and dynamics : GGD
Volume: 18
Issue: 1
Pages: 191-202
Publisher/Platform: EMS Publ.
Year of Publication: 2024
Free key words: Commutator length
equations in free groups
DDC notations: 500 Science
Publikation type: Journal Article
Abstract: Let F be a free group. We present for arbitrary g∈N a LOGSPACE (and thus polynomial time) algorithm that determines whether a given w∈F is a product of at most g commutators; and more generally, an algorithm that determines, given w∈F, the minimal g such that w may be written as a product of g commutators (and returns ∞ if no such g exists). This algorithm also returns words x 1 ,y 1 ,…,x g ,y g such that w=[x 1 ,y 1]…[x g ,y g]. These algorithms are also efficient in practice. Using them, we produce the first example of a word in the free group whose commutator length decreases under taking a square. This disproves in a very strong sense a conjecture by Bardakov.
DOI of the first publication: 10.4171/ggd/747
URL of the first publication: https://ems.press/journals/ggd/articles/12655883
Link to this record: urn:nbn:de:bsz:291--ds-435663
hdl:20.500.11880/39041
http://dx.doi.org/10.22028/D291-43566
ISSN: 1661-7215
1661-7207
Date of registration: 27-Nov-2024
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Professorship: MI - Prof. Dr. Laurent Bartholdi
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
10.4171-ggd-747.pdf258,03 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons