Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-43415
Titel: Optimization of 3D Passive Acoustic Mapping Image Metrics: Impact of Sensor Geometry and Beamforming Approach
VerfasserIn: Therre, Sarah
Fournelle, Marc
Tretbar, Steffen
Sprache: Englisch
Titel: Sensors
Bandnummer: 24
Heft: 6
Verlag/Plattform: MDPI
Erscheinungsjahr: 2024
Freie Schlagwörter: passive acoustic mapping
cavitation monitoring
high-intensity focused ultrasound
ultrasound therapy
DDC-Sachgruppe: 500 Naturwissenschaften
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Three-dimensional passive acoustic mapping (PAM) with matrix arrays typically suffers from high demands on the receiving electronics and high computational load. In our study, we investigated, both numerically and experimentally, the influence of matrix array aperture size, element count, and beamforming approaches on defined image metrics. With a numerical Vokurka model, matrix array acquisitions of cavitation signals were simulated. In the experimental part, two 32 × 32 matrix arrays with different pitches and aperture sizes were used. After being reconstructed into 3D cavitation maps, defined metrics were calculated for a quantitative comparison of experimental and numerical data. The numerical results showed that the enlargement of the aperture from 5 to 40 mm resulted in an improvement of the full width at half maximum (FWHM) by factors of 6 and 13 (in lateral and axial dimension, respectively). A larger array sparsity influenced the point spread function (PSF) only slightly, while the grating lobe level (GLL) remained more than 12 dB below the main lobe. These results were successfully experimentally confirmed. To further reduce the GLL caused by array sparsity, we adapted a non-linear filter from optoacoustics for use in PAM. In combination with the delay, multiply, sum, and integrate (DMSAI) algorithm, the GLL was decreased by 20 dB for 64-element reconstructions, resulting in levels that were identical to the fully populated matrix reconstruction levels.
DOI der Erstveröffentlichung: 10.3390/s24061868
URL der Erstveröffentlichung: https://www.mdpi.com/1424-8220/24/6/1868
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-434150
hdl:20.500.11880/38928
http://dx.doi.org/10.22028/D291-43415
ISSN: 1424-8220
Datum des Eintrags: 8-Nov-2024
Fakultät: SE - Sonstige Einrichtungen
Fachrichtung: SE - Sonstige Einrichtungen
Professur: SE - Sonstige
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
sensors-24-01868.pdf8,61 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons