Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-43399
Titel: Software doping analysis for human oversight
VerfasserIn: Biewer, Sebastian
Baum, Kevin
Sterz, Sarah
Hermanns, Holger
Hetmank, Sven
Langer, Markus
Lauber-Rönsberg, Anne
Lehr, Franz
Sprache: Englisch
Titel: Formal methods in system design : an international journal
Verlag/Plattform: Springer
Erscheinungsjahr: 2024
DDC-Sachgruppe: 004 Informatik
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: This article introduces a framework that is meant to assist in mitigating societal risks that software can pose. Concretely, this encompasses facets of software doping as well as unfairness and discrimination in high-risk decision-making systems. The term software doping refers to software that contains surreptitiously added functionality that is against the interest of the user. A prominent example of software doping are the tampered emission cleaning systems that were found in millions of cars around the world when the diesel emissions scandal surfaced. The first part of this article combines the formal foundations of software doping analysis with established probabilistic falsification techniques to arrive at a black-box analysis technique for identifying undesired effects of software. We apply this technique to emission cleaning systems in diesel cars but also to high-risk systems that evaluate humans in a possibly unfair or discriminating way. We demonstrate how our approach can assist humans-in-the-loop to make better informed and more responsible decisions. This is to promote effective human oversight, which will be a central requirement enforced by the European Union’s upcoming AI Act. We complement our technical contribution with a juridically, philosophically, and psychologically informed perspective on the potential problems caused by such systems.
DOI der Erstveröffentlichung: 10.1007/s10703-024-00445-2
URL der Erstveröffentlichung: https://link.springer.com/article/10.1007/s10703-024-00445-2
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-433995
hdl:20.500.11880/38917
http://dx.doi.org/10.22028/D291-43399
ISSN: 1572-8102
0925-9856
Datum des Eintrags: 7-Nov-2024
Fakultät: MI - Fakultät für Mathematik und Informatik
Fachrichtung: MI - Informatik
Professur: MI - Prof. Dr. Holger Hermanns
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
s10703-024-00445-2.pdf1,14 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons