Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-43314
Titel: Artificial intelligence in commercial fracture detection products: a systematic review and meta-analysis of diagnostic test accuracy
VerfasserIn: Husarek, Julius
Hess, Silvan
Razaeian, Sam
Ruder, Thomas D.
Sehmisch, Stephan
Müller, Martin
Liodakis, Emmanouil
Sprache: Englisch
Titel: Scientific Reports
Bandnummer: 14
Heft: 1
Verlag/Plattform: Springer Nature
Erscheinungsjahr: 2024
Freie Schlagwörter: Bone imaging
Fracture repair
DDC-Sachgruppe: 610 Medizin, Gesundheit
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Conventional radiography (CR) is primarily utilized for fracture diagnosis. Artificial intelligence (AI) for CR is a rapidly growing field aimed at enhancing efficiency and increasing diagnostic accuracy. However, the diagnostic performance of commercially available AI fracture detection solutions (CAAI-FDS) for CR in various anatomical regions, their synergy with human assessment, as well as the influence of industry funding on reported accuracy are unknown. Peer-reviewed diagnostic test accuracy (DTA) studies were identified through a systematic review on Pubmed and Embase. Diagnostic performance measures were extracted especially for different subgroups such as product, type of rater (stand-alone AI, human unaided, human aided), funding, and anatomical region. Pooled measures were obtained with a bivariate random effects model. The impact of rater was evaluated with comparative meta-analysis. Seventeen DTA studies of seven CAAI-FDS analyzing 38,978 x-rays with 8,150 fractures were included. Stand-alone AI studies (n=15) evaluated five CAAI-FDS; four with good sensitivities (>90%) and moderate specificities (80–90%) and one with very poor sensitivity (<60%) and excellent specificity (>95%). Pooled sensitivities were good to excellent, and specificities were moderate to good in all anatomical regions (n=7) apart from ribs (n=4; poor sensitivity / moderate specificity) and spine (n=4; excellent sensitivity / poor specificity). Funded studies (n=4) had higher sensitivity (+5%) and lower specificity (-4%) than non-funded studies (n=11). Sensitivity did not differ significantly between stand-alone AI and human AI aided ratings (p=0.316) but specificity was significantly higher the latter group (p<0.001). Sensitivity was significant lower in human unaided compared to human AI aided respectively stand-alone AI ratings (both p≤0.001); specificity was higher in human unaided ratings compared to stand-alone AI (p<0.001) and showed no significant differences AI aided ratings (p=0.316). The study demonstrates good diagnostic accuracy across most CAAI-FDS and anatomical regions, with the highest performance achieved when used in conjunction with human assessment. Diagnostic accuracy appears lower for spine and rib fractures. The impact of industry funding on reported performance is small.
DOI der Erstveröffentlichung: 10.1038/s41598-024-73058-8
URL der Erstveröffentlichung: https://www.nature.com/articles/s41598-024-73058-8
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-433140
hdl:20.500.11880/38837
http://dx.doi.org/10.22028/D291-43314
ISSN: 2045-2322
Datum des Eintrags: 29-Okt-2024
Bezeichnung des in Beziehung stehenden Objekts: Supplementary Information
In Beziehung stehendes Objekt: https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-024-73058-8/MediaObjects/41598_2024_73058_MOESM1_ESM.docx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-024-73058-8/MediaObjects/41598_2024_73058_MOESM2_ESM.docx
Fakultät: M - Medizinische Fakultät
Fachrichtung: M - Chirurgie
Professur: M - Keiner Professur zugeordnet
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
s41598-024-73058-8.pdf4,21 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons