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Conventional radiography (CR) is primarily utilized for fracture diagnosis. Artificial intelligence (AI) 
for CR is a rapidly growing field aimed at enhancing efficiency and increasing diagnostic accuracy. 
However, the diagnostic performance of commercially available AI fracture detection solutions 
(CAAI-FDS) for CR in various anatomical regions, their synergy with human assessment, as well 
as the influence of industry funding on reported accuracy are unknown. Peer-reviewed diagnostic 
test accuracy (DTA) studies were identified through a systematic review on Pubmed and Embase. 
Diagnostic performance measures were extracted especially for different subgroups such as product, 
type of rater (stand-alone AI, human unaided, human aided), funding, and anatomical region. Pooled 
measures were obtained with a bivariate random effects model. The impact of rater was evaluated with 
comparative meta-analysis. Seventeen DTA studies of seven CAAI-FDS analyzing 38,978 x-rays with 
8,150 fractures were included. Stand-alone AI studies (n = 15) evaluated five CAAI-FDS; four with good 
sensitivities (> 90%) and moderate specificities (80–90%) and one with very poor sensitivity (< 60%) 
and excellent specificity (> 95%). Pooled sensitivities were good to excellent, and specificities were 
moderate to good in all anatomical regions (n = 7) apart from ribs (n = 4; poor sensitivity / moderate 
specificity) and spine (n = 4; excellent sensitivity / poor specificity). Funded studies  (n = 4) had higher 
sensitivity (+ 5%) and lower specificity (-4%) than non-funded studies (n = 11). Sensitivity did not 
differ significantly between stand-alone AI and human AI aided ratings (p = 0.316) but specificity was 
significantly higher the latter group (p < 0.001). Sensitivity was significant lower in human unaided 
compared to human AI aided respectively stand-alone AI ratings (both p ≤ 0.001); specificity was higher 
in human unaided ratings compared to stand-alone AI (p < 0.001) and showed no significant differences 
AI aided ratings (p = 0.316).  The study demonstrates good diagnostic accuracy across most CAAI-FDS 
and anatomical regions, with the highest performance achieved when used in conjunction with human 
assessment. Diagnostic accuracy appears lower for spine and rib fractures. The impact of industry 
funding on reported performance is small.

Bone fractures are a significant global public health burden and one of the main reasons for emergency 
department (ED) visits1. In a comprehensive prospective fracture database, an estimated overall incidence of 
1fractures per 100,000 people per year was documented, leading to an annual fracture incidence rate of 1.2%, 
with an increase from the age of 50 up to 8% 2. An estimate from 2005 predicted a drastic increase of up to 50% 
in the annual incidence of fractures by 2025 due to an aging population3.

Radiological imaging is an essential component of the diagnostic process in ED, accounting for over 20% 
of all emergency resources utilized4. The number of radiologic examinations performed per patient in the 
ED has continued to disproportionately increase when compared to the consistently rising number of patient 
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consultations: since 2006, there has been a doubling in the number of conventional radiography (CR) images and 
computed tomography (CT) examinations have witnessed a staggering 700% increase during this timeframe5.

The rising incidence of fractures in an aging population and the disproportionate increase in radiological 
diagnostics have led to various problems in everyday clinical practice: Firstly, the high workload during shift 
work can lead to stress and medical errors6–8. Secondly, prioritized CT scan examination may lead to a delayed 
release of final CR reports, resulting in discrepancies with the emergency physician’s preliminary discharge letter 
and can cause clinically relevant diagnostic errors in up to 7.5% of cases9. Thirdly, the desired communication 
between various medical disciplines is frequently insufficient, primarily relying on telephone interactions. 
This limited interaction can impede the joint review of imaging examinations and potentially lead to false-
negative findings in cases where inexperienced emergency physicians lack adequate support from experienced 
radiologists10.

Artificial intelligence (AI) seems to be a promising approach to address these issues and to assist clinicians, 
especially during radiographic fracture detection. In this context, certified and commercially available AI fracture 
detection solutions (CAAI-FDS) are of special interest, as they are expected to meet regulatory requirements 
(e.g., data privacy) and quality standards, as well as safety criteria, along with higher accuracy and reliability.

Initial studies reported a time saving of between 6.3 and 11.6 s per interpreted CR with the support of AI, 
which may help to reduce workload and stress levels throughout the day11–13. Furthermore, studies have shown 
that AI can provide several solutions with promising results in the detection of fractures, and may lead to a 
reduction in diagnostic errors14–17.

These reviews and diagnostic test accuracy (DTA) meta-analyses have several short-comings: Up to now, most 
analyses have focused on proof-of-concept studies. However, a dynamic advancement has led to a rapid increase 
in peer-reviewed studies evaluating the diagnostic accuracy of CAAI-FDS. Additionally, previous overviews 
dealing with the use of commercially AI solutions in radiodiagnostics have neglected one crucial aspect – a 
thorough evaluation of the diagnostic accuracy of the products presented to address and clarify relevant medical 
and legal aspects. Currently, there is a gap in the existing literature as no comparative meta-analysis has been 
conducted to evaluate the diagnostic performance of different types of raters (stand-alone AI vs. human without 
AI assistance vs. human with AI assistance). Furthermore, there are no stratified analyses examining different 
anatomical regions, which makes it difficult to identify local performance limitations of CAAI-FDS. The impact 
of industry funding of trials on reported diagnostic accuracy is also unexplored, opening the possibility of 
reporting bias as only 6% of scientific analyses of AI products are conducted independently, resulting in potential 
bias regarding the evidence and a lack of transparency16,18. Lastly, there is a lack of investigation of the reference 
standards used to validate the diagnostic accuracy of both AI and human raters, making a comprehensive 
investigation essential to ensure reliability and comparability.

Moreover, despite the growing availability, identifying the most suitable product in this rapidly expanding 
market remains a challenging endeavor, given that studies have unveiled significant variations in diagnostic 
accuracy16,18,19.

Thus, the objectives of this DTA systematic review and meta-analysis were:

 i.  Provide a current overview of FDA-cleared and CE-marked CAAI-FDS based on CR whose diagnostic 
accuracy had been validated by peer-reviewed publications.

 ii.  Systematically evaluate and compare the diagnostic accuracy of identified CAAI-FDS, employing standard-
ized performance metrics. Quantify the diagnostic performance according to different anatomical regions, 
industry funding and the chosen reference standard.

 iii.  Evaluation of the added value of CAAI-FDS by comparing the diagnostic accuracy of human ratings with 
and without assistance, as well as stand-alone AI ratings.

Methods
This study was conducted in accordance with the Cochrane Handbook for Systematic Reviews of DTA20 and 
reported by the Preferred Reporting Items for a Systematic Review and Meta-analysis of Diagnostic Test Accuracy 
Studies (PRISMA-DTA)21. The comprehensive study consists of two different parts. First, identification of FDA-
cleared and CE-marked CAAI-FDS and their corresponding companies. Second, a systematic review and meta-
analysis to identify peer-reviewed publications and evaluating DTA for the identified CAAI-FDS.

Part one – product identification
The independent web-based overview from the Diagnostic Image Analysis Group (DIAG) at Radboud University 
Medical Center in the Netherlands22 and the American College of Radiology Data Science Institute (ACR DSI) 
AI Central database23 were used for company and product identification. The DIAG maintains a website that 
offers information on AI-based products for clinical radiology practice, with a focus on CE-marked products for 
the European market, whereas the ACR DSI AI Central database provides information for products that have 
received clearance from the FDA, with a specific focus on the US market.

The DIAG and ACR DSI were searched (August 29th, 2023, updated November 11th, 2023) using search 
filters within the databases for CAAI-FDS. All selected companies and the products offered were checked for 
their current approval status and exact function for clinical use.

Criteria for product eligibility

 (1)  Operation based on CR images.
 (2)  CE-marked or FDA-cleared approval status.
 (3)  Availability as a commercially marketed product for clinical use focusing on fracture detection.
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Part two – systematic review
First, all identified companies and product names identified in part one were connected with the Boolean 
operator ‘OR’ for a PubMed and Embase database search (November 11th, 2023) via their corresponding website 
engine to identify DTA studies for meta-analysis. To increase the sensitivity of the search, CAAI-FDS that work 
with CT images were also included in the search string. The search syntax is shown in Supplement III.

Second, the Citationchaser tool24 was utilized for the found publications on the company’s websites.

Criteria for final study eligibility
The final study eligibility criteria were based on the PICO scheme:

Population: Patients with CR that were investigated for the presence of any kind of fracture with a defined 
reference standard as ground truth.
Intervention: Detection by any type of CAAR-FDS or with its assistance.
Comparison: All comparisons.
Outcomes: Values for sensitivity and specificity with 95% confidence interval (CI) and/or true positives 
(TP), false positives (FP), false negatives (FN), and true negatives (TN).

Furthermore, the publications should be in English and dated 2015 or later with a peer reviewed status. Mention 
of the product name in the publication or mention of the publication on the company’s website that allows a 
direct link to the CAAI-FDS. Studies that did not meet the above criteria were excluded.

Screening process
Results of the different databases and from the citation chasing were collected and checked for duplications 
based on the method described by Bramer et al.25 using EndNote 20.5 (Clarivate Analytics, PA, USA). The 
remaining articles were entered into the web-based platform Rayyan26 for an accurate screening process. 
Subsequently, two authors (J.H. and S.H.) conducted independent reviews of both the title and abstract, followed 
by a comprehensive evaluation of the full text of the remaining studies if deemed appropriate. Discrepancies 
were discussed between the authors and resolved by consensus.

Data collection process
One author (J.H.) extracted the values for TP, FP, FN, and TN for all subgroups directly out of the included 
studies, or calculated based on the given information. If only the sensitivity with 95% confidence interval (CI) 
and specificity with 95% CI was given, the Wald interval error formula27 was used to estimate TP, FP, FN, and TN 
(see Supplement I). Further missing information or data was requested from the corresponding authors. These 
data were entered into a predefined collection form using Microsoft Excel 16.6 (Microsoft Corporation, WA, 
USA). A second author (S.H.) then reviewed the collection by comparing the data sheet with the information 
from the included studies. Any ambiguities and differences of interpretation were discussed and resolved by 
mutual agreement or with the help of a statistical expert (M.M.).

In addition to these values, detailed information was collected for each article identified and included in the 
study. This included the author’s name, year of publication, characteristics of the population (e.g. sample size, age 
structure, gender distribution), assessment characteristics of diagnostic accuracy (e.g. stand-alone AI, unaided 
or aided human assessment), type of CAAI-FDS used, reference standards used, and financial sources.

Risk of bias and applicability
The Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2)28 recommended by the Cochrane 
Collaboration was used to evaluate the risk of bias (RoB). A modified version of the suggested list of signaling 
questions was created for each domain adapted to this systematic review. The complete list of signaling questions 
is available in the Supplement IV. Four domains included patient selection, index test, reference standard and 
funding were qualified with the support of the signaling questions as ‘low’, ‘high’ or ‘unclear’ for risk of bias and 
applicability. The assessments were performed independently by two authors (J.H. and S.H.). Disagreements 
were resolved by discussion. If the two researchers could not reach a consensus, a senior author was consulted 
to help to reach a final decision. Finaly, each included study was assessed for an overall rating. Publications that 
received one ‘high’ RoB rating were categorized as ‘moderate’ RoB studies, two or more ‘high’ RoB ratings were 
automatically categorized as ‘high’ RoB studies according to the QUADAS criteria.

Data synthesis and statistical analysis
The statistical analysis followed the recommendations of the Cochrane Handbook for Systematic Reviews of 
DTA20 and was performed in STATA 18.1 (StataCorp, College Station, TX, USA) and the – metadta – command29 
for meta-analysis and meta-regression of DTA data. The strength of this command is that it avoids lengthy and 
tedious calculations for fitting regression models and processing the estimates by bundling appropriate statistical 
procedures in a robust and user-friendly program and implementing state-of-the-art statistical methods for 
meta-analysis of DTA studies29. The command utilizes a generalized linear mixed model for the binomial 
category, employing a logit link as recommended by the Chap.  10 of the Cochrane Handbook for Systematic 
Reviews of Diagnostic Test30. It quantifies the between-study heterogeneity using the I2 statistics by Zhou & 
Dendukuri (2014)31. The generalized I2 is obtained by the random-effect bivariate model and is shown for every 
forest plot, it summarizes the overall heterogeneity, by considering the correlation between sensitivity and 
specificity. Furthermore, detailed statistics for the between-study heterogeneity for each forest plot are shown 
in Supplement V.
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If the estimated numbers with the use of – metadta – command revealed the extracted values of sensitivity 
and specificity with 95% CI with a maximum absolute deviation of 1% the numbers were used, otherwise the 
estimates were not included in the meta-analysis.

If more than one diagnostic accuracy estimate was presented in a subgroup analysis for a study, all available 
estimates were pooled first by a random-effects meta-analysis and the pooled estimates were used in the further 
analysis.

For each analysis the associated forest plots are shown. Sensitivity and specificity are given as proportions 
with 95% CI. Sensitivity and specificity levels were grouped as very poor (< 0.60) poor (0.60 to < 0.70), moderate 
(0.70 to < 0.90), good (0.90 to < 0.95) and excellent (0.95 and above).

Different stratified analyses were performed (e.g. by CAAI-FDS, by body region, reference standard and 
industry funding status) with descriptive analysis of the pooled estimates, i.e. without statistical comparison of 
the pooled estimates. A comparative meta-analysis between the three rater groups (stand-alone AI vs. human 
unaided vs. human AI aided ratings) was performed for the studies that provided results for these three groups. 
Additionally, this analysis was restricted to unfunded studies. In comparative meta-analysis, the study-specific 
relative sensitivity and specificity with 95% CI was calculated additionally to the forest plot. A p-value of < 0.05 
was defined as significant. No correction for multiple testing was performed.

Code availability
The analytic code for STATA 18.1 (StataCorp, College Station, TX, USA) is uploaded as a Supplementary 
document.

Results
Product selection
In total, 214 general AI products with CE marking and 229 with FDA clearance were identified within the 
databases for commercial distribution. Of these, five CAAI-FDS were listed by DIAG with European market 
certification and four were listed in the ACR DSI database for the US market. Three CAAI-FDS are CE-marked 
and FDA-cleared. Finally, seven certified CAAI-FDS of six companies using CR were identified. Included CAAI-
FDS are shown in Table 1.

Study selection
The PubMed (n = 1804) and Embase (n = 2643) search resulted in a total of 4447 publications. Eighteen peer 
reviewed DTA studies were found on the respective company websites, which were subsequently used for 
citation chasing. In this way, a total of 755 forward and backward references were identified. After removal of all 
duplicates (n = 2054), 3148 publications were included for the title and abstract screening. After the first round 
of screening, 138 full texts were analyzed. Finally, 19 DTA publications were identified that showed a connection 
to CAAI-FDS based on CR. Two studies were excluded from the analysis due to missing data: The study by 
Shelmerdine et al.32 was excluded because it did not provide isolated sensitivity and specificity for fracture 
detection, as multiple pathologies were examined for CR. Lindsey et al.33 was excluded due to insufficient data 
on the total number of fractures, which prevented the calculation of a contingency table. Additionally, the 
determination by the Wald interval error formula27 resulted in insufficient deviations. Finaly, resulting in a total 
of 17 studies included in the DTA meta-analysis (see Fig. 1 flowchart). Descriptive characteristics of the selected 
studies are shown in Table 2.

Risk of bias and applicability
The result of the respective RoB and applicability assessments is shown in Table 3.

Two studies34,35 were rated with a high RoB due an unclear reference standard, whereby one study was 
additionally funded by the product company and the other had an unclear patient selection. Furthermore, nine 
studies11,12,36–42 were estimated as moderate RoB studies, because one category was judged as ‘high’. Of these, 
five were funded11,12,36,39,40, three had an inadequate reference standard38,41,42 and one reported an inadequate 
patient selection37. A total of 6 out of 17 studies were judged to be ‘low’ in all RoB categories.

In five studies, patient selection was problematic in terms of applicability, as the selection was based exclusively 
on children/young adults or individual body regions38,39,43–45. Unclear patient selection concerning applicability 
were present in two studies and was already taken into consideration in the RoB rating34,37. There were a total 

Company Founded Main Office Website Product Released CE-certified FDA-cleared

Annalise-AI 2019 Sydney, Australia https://annalise.ai Enterprise CXR Triage Trauma 2020 ✓ ✓

AZmed 2018 Paris, France http://azmed.co Rayvolve 2019 ✓ ✓

Imagen Technologies 2015 New York, USA https://imagen.ai
OsteoDetect 2018

✗ ✓
FractureDetect 2020

Milvue 2018 Paris, France http://milvue.com Suite - SmartUrgences 2020 ✓ ✗
Radiobotics 2017 Copenhagen, Denmark http://radiobotics.com RBfracture 2022 ✓ ✗
Gleamer 2017 Paris, France http://gleamer.ai BoneView Trauma 2020 ✓ ✓

Table 1. Descriptive characteristics of the included commercial fracture detection products for conventional 
radiography, sorted by company name. CE Conformité Européenne, FDA Food and Drug Administration.
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of seven studies13,34,35,38,41,42,46 in which the methodology chosen to determine the reference standard was 
considered suboptimal, making their applicability inadequate. Two of these studies were categorized as “low” 
RoB in the overall assessment: One relied solely on CT reports46 and the other used a combination of expert 
opinion and AI13. A spreadsheet provides a comprehensive overview of the QUADAS-2 results in Table 4.

Meta-analyses
Using sufficient information from the 17 included studies, data provided by the corresponding authors or 
calculations with the Wald interval error formula, 157 contingency tables were extracted for analysis. Fifteen 
studies presented a table of diagnostic accuracy determined using stand-alone AI, nine studies presented 
estimates of AI combined with human ratings, and twelve studies reported additional unaided human ratings 
(Fig. 2). The generalized I2 values for summarized heterogeneity were as followed: Artificial intelligence 0.86; 
Human aided 0.87; Human unaided 0.94; Overall 0.79.

Diagnostic accuracy of stand-alone AI according to CAAI-FDS
The pooled sensitivity of all stand-alone AI studies (n = 15) was good (0.91, 95% CI 0.86, 0.94) and the pooled 
specificity was moderate (0.89, 95% CI 0.87, 0.91), Fig. 3. Nine studies determined the diagnostic accuracy with 
BoneView, four studies with Rayvolve, two studies with SmartUrgence, one study each with FractureDetect and 
Enterprise CXR Triage Trauma. The sensitivities ranged from very poor (0.42, 95% CI 0.38, 0.47, Enterprise CXR 

Fig. 1. PRISMA flowchart.
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Trauma Triage) to excellent (0.98, 95% CI 0.97, 0.99, BoneView), the specificities from poor (0.70 95% CI 0.68, 
0.73, Rayvolve) to excellent (0.96, 95% CI 0.96, 0.97, Enterprise CXR Trauma Triage). Only one study compared 
multiple CAAI-FDS (BoneView vs. Rayvolve vs. SmartUrgency) with good diagnostic accuracy (sensitivity and 
specificity values above 0.90) for all CAAI-FDS, except for the specificity for Rayvolve of 0.70, 95% CI 0.68, 0.73. 
The generalized I2 values for summarized overall heterogeneity were as followed: BoneView 0.82; Enterprise 
CXR TT -; FractureDetect -; Rayvolve < 0.01; SmartUrgence -; Overall 0.85.

Diagnostic accuracy of stand-alone AI according to different body regions
Figure 4 shows the diagnostic accuracy according to different body regions with stand-alone AI ratings. The 
pooled sensitivity and specificity were similar in ankle/foot, elbow/arm, knee/leg, pelvis/hip, shoulder/clavicle, 

Study

Risk of bias Applicability concerns

Patient selection Index test Reference standard Funding Patient selection Index test Reference standard

Anderson et al.36 ✓ ✓ ✓ ✗ ✓ ✓ ✓

Bousson et al.50 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Canoni-Meynet 
et al.13 ✓ ✓ ✓ ✓ ✓ ✓ ✗

Cohen et al.37 ✗ ✓ ✓ ✓ ? ✓ ✓

Dupuis et al.38 ✓ ✓ ✗ ✓ ✗ ✓ ✗
Duron et al.11 ✓ ✓ ✓ ✗ ✓ ✓ ✓

Gasmi et al.43 ✓ ✓ ✓ ✓ ✗ ✓ ✓

Gipson et al.46 ✓ ✓ ✓ ✓ ✓ ✓ ✗
Guermazi et al.53 ✓ ✓ ✓ ✗ ✓ ✓ ✓

Hayashi et al.39 ✓ ✓ ✓ ✗ ✗ ✓ ✓

Jacques et al.45 ✓ ✓ ✓ ✓ ✗ ✓ ✓

Jones et al.40 ✓ ✓ ✓ ✗ ✓ ✓ ✓

Nguyen et al.44 ✓ ✓ ✓ ✓ ✗ ✓ ✓

Oppenheimer et al.41 ✓ ✓ ✗ ✓ ✓ ✓ ✗
Parpaleix et al. 42 ✓ ✓ ✗ ✓ ✓ ✓ ✗
Regnard et al.35 ✓ ✓ ✗ ✗ ✓ ✓ ✗
Reichert et al.34 ✗ ✓ ✗ ✓ ? ✓ ✗

Table 3. Tabular presentation of the QUADAS-2 results sorted by author. ✓ low risk, ✗ high risk, ? unclear 
risk.

 

Author Product Male Female Mean Age (Range) Sample size Fracture size Risk of bias Reference standard (based on) Funding

Anderson et al.36 FractureDetect 73 102 N/A (22 to > 75) 4200 1008 Moderate Expert consensus (CR) ✓

Bousson et al.50

SmartUrgence

742 468 41.3 (15 to 104) 1500 356 Low Expert consensus (CR ✗BoneView

Rayvolve

Canoni-Meynet et al.13 BoneView 268 232 37.0 (0.25 to 99) 500 188 Low AI and expert consensus (CR) ✗
Cohen et al.37 BoneView N/A N/A N/A 637 247 Moderate Expert consensus (CR) ✗
Dupuis et al.38 Rayvolve 1459 1090 8.5 (0 to 17) 2634 809 Moderate Single expert opinion (CR) ✗
Duron et al.11 BoneView 242 358 57.0 (18 to 100) 600 300 Moderate Expert consensus (CR) ✓

Gasmi et al.43 Rayvolve 474 404 8.3 (N/A) 878 182 Low Expert consensus (CR) ✗
Gipson et al.46 Enterprise CXR TT 949 455 52 (33 to 69) 2800 134 Low Report based (CT) ✗
Guermazi et al.53 BoneView 153 327 59.0 (N/A) 480 240 Moderate Expert consensus (CR) ✓

Hayashi et al.39 BoneView 167 133 10.8 (2 to 21) 300 150 Moderate Expert consensus (CR) ✓

Jacques et al.45 BoneView 155 141 41.1 (N/A) 296 178 Low Expert consensus (CT) ✗
Jones et al.40 FractureDetect 5520 7226 > 55.0 (22 to 90) 16,019 2415 Moderate Expert consensus (CR ✓

Nguyen et al.44 BoneView 167 133 10.8 (2 to 21) 300 150 Low Expert consensus (CR) ✗
Oppenheimer et al.41 BoneView 309 426 61.39 (2 to 100) 1163 367 Moderate Report based (CR) ✗
Parpaleix et al. 42 SmartUrgence N/A N/A 30.0 (16 to 52) 1772 616 Moderate Report based (CR) ✗
Regnard et al.35 BoneView N/A N/A N/A (1 to 103) 4774 785 High AI & report consensus (CR) ✓

Reichert et al.34 Rayvolve N/A N/A N/A 125 25 High Single expert opinion (CR) ✗

Table 2. Descriptive characteristics of the included studies sorted by author. CR conventional radiography, 
CT computed tomography, N/A not available.
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and spine CR, all around 0.90. Hand/wrist showed the highest pooled sensitivity and specificity (0.95, 95% CI 
0.92, 0.96 and 0.87, 95% CI 0.81, 0.92). Rib fracture detection showed in three studies the lowest pooled sensitivity 
(0.66, 95%: 0.44, 0.84) and specificity (0.82, 95%: 0.64, 0.92). The generalized I2 values for summarized overall 
heterogeneity were as followed: Ankle/Foot < 0.01; Elbow/Arm 0.01; Hand/Wrist < 0.01; Knee/Leg 0.02; Pelvis/
Hip < 0.01; Ribs < 0.01; Shoulder/Clavicle < 0.01; Spine < 0.01; Overall 0.18. Supplement II, Supplementary Fig. 1 
shows the ratings for human unaided and aided by AI for the different body regions with the corresponding 
generalized I2 values. The pooled sensitivity and specificity were higher in all body regions for the human aided 
ratings, except for the pooled specificity for the ribs and shoulder/clavicle.

Diagnostic accuracy of stand-alone AI according to reference standard
The reference standard was determined in eight studies by a group of at least two experts. The calculated pooled 
sensitivity was 0.92 (95% CI 0.89, 0.94) and the pooled specificity was 0.89 (95% CI 0.85, 0.92). The other seven 
studies determined the reference standard using other methods (see Table  2) and reported slightly different 
values for the pooled sensitivity and specificity (0.90, 95% CI 0.76, 0.96 and 0.90, 95% CI 0.86, 0.93) (Fig. 5). 
Generalized I2 values: Expert consensus 0.73; Others 0.85; Overall 0.86.

Diagnostic accuracy of stand-alone AI according to industry funding status
Four of the six funded studies reported a diagnostic accuracy of the stand-alone AI (Fig. 6). In these studies, the 
pooled sensitivity of 0.94 (95% CI 0.89, 0.97) was slightly higher than in the 11 non-funded studies, which had a 
pooled value of 0.89 (95% CI 0.82, 0.94). An opposite result was calculated for the pooled specificity (0.86, 95% 
CI 0.83, 0.90, with industry funding and 0.90, 95% CI 0.87, 0.93, without industry funding). The generalized I2 
values for summarized overall heterogeneity were as followed: Industry funding 0.80; Other/no funding 0.86; 
Overall 0.86.

Diagnostic accuracy of stand-alone AI according to RoB category
Six studies that were classified as low RoB studies reported the lowest pooled sensitivity but highest pooled 
specificity (0.87, 95% CI 0.71, 0.94 and 0.90, 95% CI 0.86, 0.94). The seven studies with moderate RoB were 
between the other two levels and had a pooled sensitivity of 0.91 (95% CI 0.88, 0.94) and a pooled specificity 
of 0.89 (95% CI 0.85, 0.92). In contrast, the two studies with high RoB showed the highest pooled sensitivity 
and the lowest pooled specificity (0.98, 95% CI 0.97, 0.99 and 0.88, 95% CI 0.87, 0.89). Figure 7 illustrates the 
corresponding forest plot. Generalized I2 values for summarized heterogeneity: Low 0.87; Moderate 0.87; High 
-; Overall 0.86.

Diagnostic accuracy according to different rater (comparative meta-analysis)
Supplement II, Supplementary Fig.  2 shows the diagnostic accuracy in detailed rater groups with the 
corresponding generalized I2 values for summarized overall heterogeneity.

Seven studies enabled a comparison of the accuracies between (i) stand-alone AI, (ii) human rater AI aided 
and (iii) human rater unaided (Fig. 8). The pooled sensitivities were for the listed rater were (i) 0.83 (95% CI 
0.71, 0.91), (ii) 0.80 (95% CI 0.69, 0.87), (iii) 0.67 (0.56,  0.77) and for the pooled specificities (i) 0.91 (95% 
CI 0.86, 0.94), (ii) 0.95 (95% CI 0.92, 0.96), and (iii) 0.96 (95% CI 0.91, 0.98), respectively. The generalized I2 
values for summarized overall heterogeneity were as followed: Artificial intelligence 0.86; Human aided 0.86; 
Human unaided 0.91; Overall 0.67. Table 5 shows the relative sensitivity and specificities of the comparative 
meta-analysis. When restricting the analysis to independent, non-industry funded, studies (see Supplementary 
Fig. 3 with generalized I2 values), the sensitivity did not differ significantly between stand-alone AI and human 
rater AI aided (p = 0.316) and the specificity was significantly higher in human AI rater aided (p < 0.001). The 

Table 4. Spreadsheet presentation of the QUADAS-2 results.
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sensitivity was significantly smaller in human rater unaided studies compared to stand-alone AI and human 
rater AI aided or (both p ≤ 0.001) and the specificity did not differ significantly between the two human rater 
groups (p = 0.316).

Fig. 2. Diagnostic accuracy with 95% confidence interval (CI) according to stand-alone AI, human unaided 
and aided rater (total). Generalized I2 values: Artificial intelligence 0.86; Human aided 0.87; Human unaided 
0.94; Overall 0.79.
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Discussion
This meta-analysis compared 17 studies using CAAI-FDS based on CR and found good diagnostic accuracy 
across most tested AI tools and anatomical regions except for ribs and spine, with the highest performance 
achieved when used in conjunction with human assessment. The impact of industry funding of the studies on 
diagnostic accuracy was close low.

In our CAAI-FDS analysis, the BoneView tool was the most frequently studied and showed a pooled sensitivity 
of 0.90 (95% CI 0.85, 0.94) and specificity of 0.89 (95% CI 0.87, 0.92). The second most frequently investigated 
product with only four studies, Rayvolve, had a higher pooled sensitivity of 0.95 (95% CI 0.93, 0.96), but at the 
same time a slightly lower specificity of 0.87 (95% CI 0.77, 0.92). Of these four studies, two were exclusively 
conducted for pediatric fractures38,43, and one study34 was judged to be highly biased with the smallest sample 
size of only 125 within the entire meta-analysis, which made the evaluation of the diagnostic performance 
of Rayvolve challenging. The same applied to the Enterprise CXR Triage Trauma (TT), FractureDetect and 
SmartUrgence products due to a lack of publications.

The performance of stand-alone AI showed overall comparable results for the different body regions, except 
for the ribs, which had a pooled sensitivity of 0.66 (95% CI 0.44, 0.84), and the spine, reporting a pooled specificity 
of 0.63 (95% CI 0.53, 0.73). The lower sensitivity in the assessment of rib fractures suggested that a stand-alone AI 
may have difficulty detecting minor or subtle fractures superimposed on CRs by other bony structures, whereas 

Fig. 3. Diagnostic accuracy with 95% confidence interval (CI) according to AI fracture detection product. 
Generalized I2 values: BoneView 0.82; Enterprise CXR TT -; FractureDetect -; Rayvolve < 0.01; SmartUrgence 
-; Overall 0.85.

 

Scientific Reports |        (2024) 14:23053 9| https://doi.org/10.1038/s41598-024-73058-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


experimental algorithms already had higher values of sensitivity around 0.90 47,48. Nevertheless, even humans 
without AI assistance had considerable difficulty in detecting rib fractures on CR41,46. In contrast, our results 
suggested that AI appeared to frequently interpret false-positive results for spinal fractures. This assumption 
was contradicted by Rosenberg et al. (2022)49, who reported a specificity of over 80% in the detection of 
thoracolumbar fractures using two different non-commercially available deep learning networks. Taking these 

Fig. 4. Diagnostic accuracy with 95% confidence interval (CI) for stand-alone AI according to body region. 
Generalized I2 values: Ankle/Foot < 0.01; Elbow/Arm 0.01; Hand/Wrist < 0.01; Knee/Leg 0.02; Pelvis/
Hip < 0.01; Ribs < 0.01; Shoulder/Clavicle < 0.01; Spine < 0.01; Overall 0.18.
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results into account, it appeared that the ribs and spine in particular require more extensive training sets and 
validation testing for the CAAI-FDS, which is why AI in fracture detection, especially in these regions of the 
body, cannot yet be considered a definitive solution in countries with limited access to CT scanners50.

Our results indicated that stand-alone AI could detect fractures with high accuracy. At the same time, there 
was a tendency to detect non-existent fractures, which was much less common in human raters without AI 
support (pooled specificity: 0.96, 95% CI 0.91, 0.98). In general, clinicians who were less involved in the daily 
assessment of radiographs or had less experience in diagnosis seemed to benefit particularly from the use of 
AI. The pooled sensitivity improved from 0.67 (95% CI 0.56, 0.77) to 0.80 (95% CI 0.69, 0.87) with the support 
of a CAAI-FDS in the present study. Neither the demographic characteristics of the study participants, the 
experience of the raters nor the location of the fracture influenced the improvement of diagnostic accuracy using 
AI support12,13,44.

This study shows that industry funding is associated with a 5% improvement in sensitivity and a 3% 
reduction in specificity. Vendor sponsored publications may have introduced bias through selective reporting 
and optimized study designs that favored positive results, such as participant selection and definition of 
endpoints that emphasized the strengths of CAAI-FDS. These practices may have led to an overestimation of the 
effectiveness of CAAI-FDS. Although industry funding can drive innovation and provide the necessary resources 
for research, a critical assessment of potential conflicts of interest was also required, so independent validation of 
these results was necessary to ensure their robustness and minimize bias. Emphasizing transparency in reporting 
and the inclusion of non-sponsored studies would contribute to a more balanced and accurate understanding 
of the diagnostic performance of CAAI-FDS. In addition, studies should explicitly disclose funding sources and 
potential conflicts of interest to maintain the integrity of the research and confidence in the results.

The studies did not reveal substantial differences in the diagnostic accuracy between the various reference 
standards, as the pooled values for sensitivity and specificity were around 0.90. Almost half of the studies were 
using a reference standard created by a group of experts, some of whom were very heterogeneous. Despite this 
consistency, two outliers could be identified that used either CT reports or CT images as a reference standard. 
The study by Gipson et al.46 reported the lowest sensitivity (0.42, 95% CI 0.38, 0.47), followed by the study by 
Jacques et al.45 (0.72, 95% CI 0.65, 0.79). Jacques et al. used CT images as ground truth and highlighted that 
studies using CR as the reference may underestimate the number of missed fractures and that their results might 

Fig. 5. Sensitivity and specificity with 95% confidence interval (CI) for stand-alone AI according to reference 
standard. Generalized I2 values: Expert consensus 0.73; Others 0.85; Overall 0.86.
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be closer to clinical reality45. This study was limited to detecting hand and wrist fractures, but comparable studies 
using CR images as a reference reported a higher sensitivity33,37.

Compared to three other meta-analyses14,15,51, our results are close to the other studies. In the overall analysis 
of all included studies, the stand-alone AI showed a sensitivity of 0.91 (95% CI 0.86, 0.94), but specificity of 0.89 
(95% CI 0.87, 0.91). Yang et al.14 reported a pooled sensitivity of 87% (95% CI 78, 93) and a specificity of 91% 
(95% CI 85, 95) in their meta-analysis of nine studies. In contrast to our research, the deep learning protocols 
used in the presented studies were not commercially available and thus were not included in our meta-analysis.

In a more recent meta-analysis Kuo et al.15 included 32 studies and reported a pooled sensitivity of 91% 
(95% CI 84, 85) and a specificity of 91% (95% CI 81, 95) for stand-alone AI which was comparable to human 
unaided judgment. In agreement to our findings, the authors reported an improved clinician performance 
when AI was used in addition to human judgment. They also highlighted the problem of underestimating 
clinician performance since most studies provided clinicians with no background clinical information. With 
one exception11, the included studies differed from our meta-analysis, as mostly experimental algorithms were 
investigated.

The third and final meta-analysis by Zhang et al.51 also revealed a similar picture. Of the 39 analyzed studies, 
only one study34 was included in our meta-analysis, as commercial availability was again not of interest. The pooled 
sensitivity and specificity of AI alone were 0.90 (95% CI 0.87–0.92) and 0.92 (95% CI 0.90–0.94), respectively, 
indicating slightly better specificity compared to our results. Surprisingly, the results from multicenter studies 
showed higher sensitivity (0.92 vs. 0.88) and specificity (0.94 vs. 0.91) compared to the results from single-center 
studies51.

Recently, a comprehensive review of CAAI-FDS on CR and CT images was published to provide information 
and evidence to assist healthcare facilities in decision making and product implementation52. The authors 
presented 21 CAAI-FDS from 15 different AI vendors, 14 of which are intended for fracture detection on CR. In 
comparison to this work, the additionally identified studies were not meta-analyzed.

The overall impact of CAAI-FDS is already remarkable. Studies reported that the time required for 
interpretation of each patient case for fracture detection can be reduced between 6.3 and 11.6 s with the aid 
of AI11–13. This reduction, when spread over a large number of cases, can decrease the overall workload of 
radiologists significantly to focus on more complex cases. However, the solutions may not only save time, but also 

Fig. 6. Sensitivity and specificity with 95% confidence interval (CI) for stand-alone AI according to funding 
status. Generalized I2 values: Industry funding 0.80; Other/no funding 0.86; Overall 0.86.
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detect concomitant injuries such as joint effusions, dislocations or bone lesions that clinicians might not have 
recognized35. Furthermore, as mentioned above, the pooled sensitivity using CAAI-FDS improved from 0.67 to 
0.80. This improvement may lead to better patient outcomes through more accurate and timely diagnoses. In 
addition, AI-assisted tools in musculoskeletal imaging impact the clinical workflow and specifically support the 
decision-making process in imaging prescription, report writing, image acquisition time, image interpretation 
and final report dictation to reduce workload53. Accordingly, a harmonized application of different AI solutions 
may lead to relieve the burden on clinicians and contribute to a reduction in overcrowded ED. In terms of cost-
effectiveness, no significant initial investment is expected for the implementation of AI systems, as the software 
can simply be installed on existing hardware and integrated into the Picture Archiving and Communication 
System (PACS) or the Radiological Information System (RIS). Product prices vary depending on the vendor 
and are often based on the number of users, installations, and analyses performed. Conversely, AI can help 
reduce costs associated with misdiagnosis, including additional tests, treatments, potential legal liabilities, and 
more efficient use of clinicians’ time. In general, better diagnostic accuracy can lead to faster and more effective 
treatments, reducing overall healthcare costs. However, possible barriers to implementation include the general 
costs, which could be a challenge for low-income countries. Regular training of staff in the use of CAAI-FDS and 
resistance to new changes may also be problematic. Additionally, regulatory approvals for new AI solutions can 
be lengthy and complex, significantly delaying their integration into clinical practice.

The present study has several limitations. A key limitation is that the DIAG and ACR DSI AI Central databases 
were used for the study. This choice was based on the transparent and good overview of available AI solutions, 
but it remains unclear how regularly these databases are updated and how complete they are. In addition, the 
heterogeneity of the included studies is due to differences in study design, demographic characteristics and 
body regions examined, which can lead to inconsistencies that make direct comparison difficult. For example, 
the resolution of the imaging techniques used in the studies is often unknown and may vary, which can affect 
diagnostic accuracy. Moreover, studies that have focused on either pediatric or adult patients may have different 
measures of diagnostic accuracy due to fractures and bone densities for the respective age groups. Furthermore, 
studies targeting different anatomical regions can be diagnostic challenging. For instance, detecting fractures in 

Fig. 7. Sensitivity and specificity with 95% confidence interval (CI) for stand-alone AI according to different 
RoB category. Generalized I2 values: Low 0.87; Moderate 0.87; High -; Overall 0.86.
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the wrist region often involves differentiating between various types of fractures, such as radius and carpal bones 
fractures, each requiring specific diagnostic criteria. Differences in CAAI-FDS implementation across studies, 
including how they are trained, validated and deployed, further contribute to this heterogeneity. These differences 
could affect the accuracy of the pooled results and overestimate their applicability on clinical practice. Another 
critical limitation is the possible bias caused by industry funded trials. Sponsored studies could exhibit selective 
reporting that focuses on positive and omits negative results, creating an exaggerated picture of the effectiveness 
of CAAI-FDS. For example, a sponsored study might emphasize the high sensitivity of the CAAI-FDS, while 
not adequately reporting cases of false positives or cases where the AI did not detect fractures. This selective 
reporting may bias the meta-analysis towards more positive results and compromise the overall objectivity. In 
addition, only patient-related sensitivity and specificity were considered in this meta-analysis, as an analysis of 
fracture-related values was not possible for all studies due to incompleteness. To maintain methodological and 
analytical homogeneity, CAAI-FDS studies based on CT imaging were excluded. Lastly, this systematic review 
was not pre-registered.

Giving these limitations, future research is necessary. Despite the promising products, their application 
possibilities and diagnostic accuracy, further detailed studies are required, as the products OsteoDetect and 
RBfracture, for example, have so far only been examined by the developers. Also, the differences in study design, 
test set demographics and results strongly emphasize the need for further research to better understand the 
performance of the different products and evaluate their applicability in clinical practice. Real-world scenarios 
in different clinical settings are required to test and validate the performance of the CAAI-FDS. Developing 
and adhering to standardized protocols for study methods and presentation of results can reduce heterogeneity 
and improve the comparability of results of DTA studies in the field of AI solutions. In addition, larger and 

Fig. 8. Diagnostic accuracy with 95% confidence interval (CI) depending on the type of rater (stand-alone AI 
and human aided/unaided).
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independent studies on the individual regions of the body are required to localize possible weaknesses that 
have already been identified in our results. Furthermore, future studies are recommended to use CT as a gold 
standard. Yang et al.14 have already recommended to define a clear reference standard. A plausible definition 
might be that conventional radiographs should be from patients who have undergone surgical internal fixation 
of the fracture. Radiographs without expected fractures should be confirmed by expert consensus based on CT 
imaging. Lastly, as initial studies showed promising results for the diagnostic accuracy of rib and spine fracture 
detection on CT images54–56, but these were excluded for methodological and analytical reasons in our study, 
further meta-analyses on fracture detection using AI on CT images are required, including the investigation 
of proof-of-concept studies. In the future, initial studies should also examine the potential economic benefits 
of CAAI-FDS to provide hospital providers with further incentives to implement these AI solutions. Finally, 
transparent reporting of AI studies, including clear disclosure of funding sources and potential conflicts of 
interest, is needed. Further non-sponsored research should be conducted to validate the results and reduce the 
impact of potential bias in the future.

The introduction of CAAI-FDS has the potential to significantly improve healthcare systems by increasing 
efficiency and diagnostic accuracy. Automated analysis of CR could reduce the burden on clinical staff, allowing 
them to focus on more complex cases and reduce turnaround times, which can be critical in emergency situations. 
Consistent AI interpretation could reduce human error and enable early detection and timely intervention, 
which could improve patient outcomes. In addition, CAAI-FDS could optimize resource allocation and reduce 
costs associated with misdiagnosis and unnecessary testing. The integration of these systems could also improve 
access to quality care in underserved areas by providing reliable diagnostic support.

Conclusions
This meta-analysis provides a comprehensive assessment of the diagnostic accuracy of CAAI-FDS on CR images 
by synthesizing data from multiple studies. Several key insights and actionable recommendations emerge from 
our study, which can inform decision-making for clinicians and policymakers.

The findings indicate that implementing CAAI-FDS can achieve the best diagnostic accuracy when AI is 
combined with human assessments, providing a valuable second opinion that can enhance diagnostic confidence 
and accuracy. Clinicians should be aware that AI demonstrates higher diagnostic accuracy in certain anatomical 
regions such as the wrist and ankle. Conversely, extra caution should be taken when using AI for diagnosing 
spine and rib fractures, where AI accuracy is comparatively lower. Additionally, clinicians should stay updated 
with the latest AI developments and understand the strengths and limitations of the AI systems they use.

Implementing feedback channels to report AI performance issues or discrepancies will help vendors 
improve their CAAI-FDS and ensure they meet clinical requirements. Developing standards for CAAI-FDS 
implementation in clinical settings, including guidelines for training, validation, and continuous monitoring of 
AI solutions, is essential to ensure reliable performance. Independent research studies that validate the products 
are crucial for providing unbiased information about their capabilities and limitations. Implementing regulations 
requiring full disclosure of funding sources and potential conflicts of interest in AI research publications is 
vital to maintain trust in AI solutions. Using high-resolution CT imaging as a reference standard in validating 
CAAI-FDS will enhance their reliability and clinical utility. Furthermore, the creation of centralized databases 
that collect and share anonymized imaging data from diverse populations can improve AI training datasets and 
contribute to the development of improved CAAI-FDS.

Simultaneously, greater market transparency is critical to enable healthcare organizations to make informed 
decisions about adoption. Policy makers should consider developing comprehensive guidelines and policies that 
support the integration of CAAI-FDS into clinical practice and ensure equitable access to these technologies 
across healthcare organizations. This includes removing potential barriers to adoption to maximize the benefits 
of AI in improving diagnostic accuracy and healthcare efficiency.

All studies
(n = 6*) Unfunded studies only (n = 5$)

Relative measure
(95% CI) p-value Relative measure (95% CI) p-value

AI vs. human unaided

 Relative sensitivity 1.19 (1.13, 1.26) p < 0.001 1.16 (1.10, 1.24) p < 0.001

 Relative specificity 0.91 (0.89, 0.94) p < 0.001 0.91 (0.88, 0.94) p < 0.001

Human aided vs. unaided

 Relative sensitivity 1.15 (1.08, 1.22) p < 0.001 1.15 (1.08, 1.23) p < 0.001

 Relative specificity 1.00 (0.98, 1.02) p = 0.945 0.99 (0.98, 1.01) p = 0.422

AI vs. human aided

 Relative sensitivity 1.04 (1.01, 1.08) p = 0.021 1.02 (0.98, 1.05) p = 0.316

 Relative specificity 0.92 (0.90, 0.94) p < 0.001 0.91 (0.89, 0.94) p < 0.001

Table 5. Relative sensitivity and specificity with 95% confidence interval (95% CI) for pairwise comparisons 
of comparative meta-analysis of studies comparing Artificial intelligence (stand-alone) vs. human unaided vs. 
human aided in all studies and in unfunded studies only. *See, Fig. 8; $ see supplementary Fig. 3.
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Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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